Key information
Duration: 3 years full time
UCAS code: FH62
Institution code: R72
Campus: Egham
The course
Geosciences & Sustainable Energy (BSc)
BSc Geosciences and Sustainable Energy is a new degree designed to provide a clear and distinct pathway leading to a career in shaping society’s response to sustainable energy and the booming sustainable energy business. On this innovative new degree, you’ll gain the knowledge and skills needed to take an active part in the energy transition and the movement towards building a cleaner and more sustainable society.
- BSc Geosciences & Sustainable Energy will give you a deep understanding of renewable energy sources like solar, wind, ocean energy, and the emerging technologies to harness the power of natural resources, as well as efficient resource management, and how to minimise waste and reduce pollution.
- You will be taught by academics with extensive industry experience allowing you to acquire highly employable practical skills and analytical abilities
- You’ll study a hands-on degree with over 60 hours of fieldwork and over 60% of timetabled study time taken up by hands on practical classes
- Study in a department consistently ranked among the top 10 in the country and home to an inspiring research culture that informs our teaching
Field trips
Fieldwork is the glue that brings together all aspects of the taught programme in Earth Sciences, as well as providing a chance for staff and students to get to know each other. The fieldwork programme is designed to provide progressive training over years 1 and 2 in preparation for fieldwork associated with year 3 dissertation projects, involving either geological mapping or environmental data collection.
The fieldwork programme includes year 1 trips to Devon, Pembrokeshire, Charnwood Forest, and Oxfordshire, year 2 trips to Scotland, Almeria, Southwest England, and for Independent Mapping, and year 3 has a trip to either Tenerife or Cyprus.
- Develop an in-depth understanding of the complex issues around climate change and energy transition
- Graduate with excellent employability prospects in the booming sustainable energy business sector
From time to time, we make changes to our courses to improve the student and learning experience. If we make a significant change to your chosen course, we’ll let you know as soon as possible.
Course structure
Core Modules
Year 1
-
In this module you will develop an understanding of basic concepts in chemistry and physics and how to apply these to geological processes. You will look at atoms and atomic structure, the periodic table of elements, reactions, equations, geochemical analysis, the composition of the earth, interpretation of phase diagrams, solubility of minerals, weathering and the hydrological cycle. You will also consider Newton’s Laws, kinematics, circular motion, planetary orbits, gravity, magnetism, electricity, resistivity, stress, strain, seismicity, isostasy, radioactivity, and geochronology.
-
In this module you develop an understanding of the skills required to practice geology in the field, carrying out a series of activities in South Devon and Pembrokeshire. You will learn to describe and interpret the origin of sedimentary, igneous and metamorphic rocks and how to prepare a geological map and cross-section using standard symbols. You will examine stereographic projections, sedimentary logging, the construction of stratigraphic columns for the identification of rocks, and the analysis of structural features using stereonets.
-
This module introduces the 4.6 billion-year history of our Evolving Earth and provides you with the skills to interpret that history. The module is subdivided into two complimentary streams that closely integrate. One stream (palaeontology) considers the story of life from its origin to the rise and fall of the dinosaurs, concluding with our own recent human evolution. It focuses on major events in evolution, and introduces you to the key concepts including systematic palaeontology, palaeoecology, palaeobiology, evolution, and taphonomy. The other stream (sedimentology) considers earth surface processes and palaeoenvironments and teaches you how to recognise the changing environments through time using techniques including rock classification, textural analysis, facies analysis and graphic logging, palaeoflow analysis, and stratigraphy. Because life and environments have co-evolved and are co-dependent, palaeontology and sedimentology need to be taught in close parallel, providing you with a powerful synthetic understanding of how our Earth has evolved in the past and continues to change in the future.
-
Earth is a dynamic and evolving planet with a record of plate tectonic and environmental change over its 4.6 billion year history. This module explores the geological structure and the processes that shape our planet and other planets within our solar system, from the planetary heat engine that powers plate motion and leads to the surface expression of these forces in volcanoes and earthquakes, to the use of maps, minerals and rocks to unlock the story in the rocks beneath our feet.
-
With the adoption of the Paris Agreement and the recent COP26, a seismic societal shift towards issues related to sustainability and climate change is taking place globally. The next generation of geoscientists are now required to understand the complex interrelations between human activities and a changing Earth system. With this module, students will explore key themes at the core of human-Earth interaction such as anthropogenic climate change, geohazards, environmental pollution, and sustainable exploitation of energy resources and energy-critical elements.
-
This module will describe the key principles of academic integrity, focusing on university assignments. Plagiarism, collusion and commissioning will be described as activities that undermine academic integrity, and the possible consequences of engaging in such activities will be described. Activities, with feedback, will provide you with opportunities to reflect and develop your understanding of academic integrity principles.
Year 2
-
In this module you will develop an understanding of the theory and practice of seismic, gravity, magnetic and resistivity surveying. You will consider the methods used to manipulate, analyse, and display geophysical data to solve geological exploration problems, and examine the strengths and weaknesses of the different data types.
-
In this module you will develop an understanding of how to analyse geological structures in terms of the deformational mechanisms and tectonic stresses that have produced them. You will look at brittle failure in rocks, fracture types and propagation, and consider the relationship between principal stresses and geologic structures on small and regional scales. You will examine remotely sensed continental and marine data sets, and use imagery available in Google Earth for tectonic analysis.
-
The module will introduce you to the principles of deep and shallow geothermal energy and its current and potential use for producing electricity and space heating (and, for heat pumps, also space cooling). Geothermal energy is the close to other geological topics such as hydrogeology, volcanology, and hydrocarbon reservoirs. The module will underline the ideal combination between geothermal energy (steady source – always there) and other but non-steady renewable sources (solar, wind and wave energy). The module will provide clear and detailed overviews on the main geothermal energy sources, namely (1) shallow geothermy (heat pumps), (2) hot-dry-rock (enhanced geothermal systems), and (3) natural geothermal (hydrothermal) systems, both in sedimentary basins and in active volcanic areas. Highly successful projects (most shallow geothermy and natural systems project) and the less successful (many hot-dry-rock projects) will be analysed to learn from them. The focus is on quantitative methods for understanding and using geothermal systems, including the basic physical principles that control the formation and maintenance of such systems, petrophysical principles, thermal principles, and using large datasets to assess the potential of geothermal systems in different geological environments. The module also covers the environmental, political/social, and economic aspects of the exploration and use of geothermal energy. The module aims to provide the students with knowledge and skills for analysing and exploring geothermal energy, both shallow and deep, in the UK and worldwide.
-
In this module you will develop advanced geological field skills. You will carry out a series of activities in an area of igneous and metamorphic rocks, and in an area of sedimentary rocks. You will learn to describe and interpret the origin of the rock types in the field and will prepare a geological map and cross-section using standard symbols. You will analyse structural features using stereonets, and infer the geological history of a region through the construction of scaled cross-sections through structurally complex terrains.
-
The purpose of this module is to provide advanced practical skills in the interpretation and synthesis of laboratory and field data, supported by literature research, and to be able to communicate as much through a presentation and report.
-
The purpose of this module is to embed GIS and programming skills for the creation, analysis and interpretation of geospatial data and coding skills to facilitate data collection, analysis, modelling and interpretation. The module explains the origin of GIS and trains students in the creation of georeferenced point, line and polygon data, combine raster and vector data, and data analysis. It also introduces Python and the use of arrays, reading and writing, branching and repeating, and plotting.
-
The module will introduce the students to the concept of sustainable energy and the main renewable energy resources. Those covered in the module are geothermal, hydro, wind, solar, and marine energy, the emphasis being on geothermal energy. The current and potential use these energy resources for producing electricity and space heating will be discussed, with application to the UK where appropriate. The focus is on current and future use of these resources, as well as on quantitative aspects and understanding some of the relevant physics. The module covers the basic concepts of energy science, including conservation of energy, basic thermodynamic concepts, energy efficiency, and related topics presented at an elementary (easily understood) level. An emphasis is on the ideal combination between geothermal energy (which is a steady source – always there) and other but non-steady renewable sources (e.g., solar and wind energy).
Year 3
-
The module will introduce you to the Geoscience (and wider background) needed to understand the exploitation of the subsurface for the storage of carbon dioxide (to reduce greenhouse gas emissions) and the storage of renewable energy (e.g. compressed air storage within salt). These new uses of the subsurface are expected to become significant businesses through the 2020s (in response to the Paris Climate Agreement), and the Petroleum Industry has the necessary skills, knowledge and resources to develop these. Consequently, many of our future graduates will likely find significant career opportunities in these new areas rather than in traditional hydrocarbon extraction. The module introduction will cover the environmental, economic, political and social background so that you understand the business model that will enable this new industry (specifically the how and why of carbon pricing). You will then investigate the geophysical methods required to evaluate potential subsurface structures. You will also look at the science behind subsurface utilization (e.g. issues such as what structures and sediments are needed and how these are similar to, or different from, the structures and sediments that form hydrocarbon reservoirs). In summary, the module aim is to produce graduates who can explore and exploit sedimentary basins in all the ways they are likely to be important during the 21st century.
-
-
This module will introduce the theory and practice of seismic, gravity, magnetic and resistivity surveying methods, and demonstrate their uses in industry. The main aims are to expose the students to the techniques used in geophysical exploration. The practical part of the module will allow students to understand the foundations of these methods.
-
-
Under the guidance of a departmental supervisor the student will design and execute an independent research project. The project may utilise data collected in the field, laboratory, and/or scientific literature. Data handling using statistical or GIS techniques must be integrated into the project. Departmental facilities are available for use by students either in supplementing data already acquired or in producing their main database. BSc Geology and MSci Geoscience projects must be based on a minimum of 21 days of mapping, either through field observations or digitally using remote sensing and other data as appropriate (which need not be terrestrial). Projects based on field observations will be supporting by at least one day of guidance in the field by a departmental supervisor. Students on other departmental degree courses must complete a project in a topic appropriate to their degree. Guidance on data analysis and presentation will be provided in timetabled classes following the data collection stage. All students submit a written report, with other material as required, in a style appropriate to their topic (e.g. consultancy report, scientific paper) and give an oral presentation at the end of their project.
Optional Modules
There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.
Year 1
-
All modules are core
Year 2
-
In this module you will develop an understanding of the hazards associated with geological activity, their causes, and approaches to risk management. You will look at volcanoes, earthquakes, and radon, and the hazards associated with the exploitation of geological resources and associated anthropogenic activity, including asbestos, the mining industry, and contaminated land. You will examine a variety of geological and geochemical data, and learn to interpret and analyse these in order to make scientifically justified decisions as to the level of risk.
-
In this module you will develop an understanding of advanced chemical concepts relevant to the Earth Sciences. You will focus on isotope geochemistry and consider techniques that are directly applicable in most geological contexts. You will attend practical classes and conduct a small project involving the analysis and interpretation of a real geochemical dataset.
-
In this module you will develop an understanding of how to classify sedimentary basins according to their tectonic mode of formation. You will learn to explain and illustrate the basic processes of subsidence and uplift in basins formed by extension, and flexural loading of, the lithosphere. You will also consider how characteristic patterns of sedimentary facies and stratigraphic architecture relate to different basin types and the tectonic processes that formed them, examining the tectonosedimentary history of stratigraphic successions in outcrop and subsurface data.
-
In this module you will further develop your understanding of igneous and metamorphic geology. You will look at the characteristics and origins of alkaline igneous rocks, the nature and controls on metamorphic reactions, and the links between metamorphism and tectonic processes. You will consider hand specimen and thin section techniques for study of minerals and igneous and metamorphic rocks, and examine analytical approaches to the interpretation of metamorphic rocks, including the quantification of metamorphic rates and processes.
-
In this module you will develop an understanding of the key events in the history of life and their environmental impact using the fossil and sedimentary record. You will analyse fossil assemblages using stratigraphic principles such as absolute dating, lithostratigraphy, biostratigraphy and sequence stratigraphy. You will consider how to interpret sedimentary rocks, and examine the importance of fossil assemblages in the interpretation of events in earth history.
-
In this module you will develop an understanding of the geological evolution of the British Isles, interpreting regional geological history from geological maps. You will learn to describe rock specimens and examine how palaeoenvironments can be reconstructed using case studies. You will also consider the application of stratigraphic techniques and use evidence from several different fields of geology to evaluate competing hypotheses for geological evolution.
-
-
The aim of the module is to introduce you to the fundamental concepts of physical hydrogeology, particularly the flow and storage of water in geologic structures. The topics covered include the importance of groundwater in the hydrologic cycle, and fluxes of water between different reservoirs. The lectures will also cover the aquifer properties (permeability, transmissivity), Darcy’s law, groundwater flow equations and simple graphical and numerical ways to solve the groundwater flow equation, how to determine aquifer properties from pump tests, regional flow systems and basics of groundwater and surface water interaction.
-
The oceans form a critical component of the global climate system. They redistribute heat and nutrients around the world and in doing so exert a significant influence on the proliferation of different organisms, regional climatic zones, and the formation of mineral deposits on the seafloor. In this module you will learn about the physical and chemical constituents of the oceans. You will be introduced to the types of oceanographic measurements that can tell us how the modern oceans behave, and how this behaviour might be extended into predictions of future behaviour. You will also learn how to extract and process large oceanographic datasets using open-access oceanographic software.
Year 3
-
This course has two main aims:
1) To introduce you to the evidence for and mechanisms of modern climate change – what climate change is, how the climate change is manifested, what physical mechanisms are driving it, and what its future status might be.
2) Methods of research in multi-disciplinary topics, report writing, and communication of complex ideas for policy makers using Earth Science as a subject matter.
-
-
-
-
-
-
-
-
-
The Earth’s climate has changed across geological time, due to the interaction of a huge array of inter-related climate forcing agents. These changes have been reconstructed using many different lines of chemical, biological and physical proxy data, and mechanistically interrogated using computer simulations (Earth-System models). In this module, you will be taught about the key features of major climatic events in Earth’s history and should gain an appreciation of the typical rates and magnitudes of change that characterise these episodes. A key aim of the module is to demonstrate some of the techniques used for quantitative palaeoclimate reconstruction, and for you to learn the critical evaluation skills needed to interpret these datasets. These skills will be developed through class practical exercises and a summative task that requires the interpretation of a raw palaeoclimate dataset.
Teaching & assessment
Teaching and learning is conducted primarily by means of practical classes. Lectures are used to introduce material and provide a context for private study, while tutorials supplement and reinforce knowledge and understanding. Field and laboratory project work carried out as individuals or in teams represent valuable opportunities for students to develop in-depth knowledge of specialist areas and help bring the syllabus to life.
Assessment is through a mix of coursework and end-of-year examination in varying proportions, depending on the chosen course units. Coursework can include literature research reports, fieldwork and laboratory exercises and reports, computer-based research projects, oral presentations and independent dissertations.
The first year is foundational, and marks do not count towards your final degree. The second and final-year marks do count, with the final year marks being more heavily weighted in order to reward progress and achievement. In the final year you will carry out an independent research project and write a research report with individual guidance from your tutor.
Entry requirements
A Levels: ABB-BBB
Required subjects:
- A-level in at least one science-based subject such as Mathematics, Physics, Geology, Chemistry, Geography or Biology.
- At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.
English language requirements
All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.
The scores we require
- IELTS: 6.5 overall. No subscore lower than 5.5.
- Pearson Test of English: 61 overall. Writing 54. No subscore lower than 51.
- Trinity College London Integrated Skills in English (ISE): ISE III.
- Cambridge English: Advanced (CAE) grade C.
Country-specific requirements
For more information about country-specific entry requirements for your country please visit here.
Undergraduate preparation programme
For international students who do not meet the direct entry requirements, for this undergraduate degree, the Royal Holloway International Study Centre offers an International Foundation Year programme designed to develop your academic and English language skills.
Upon successful completion, you can progress to this degree at Royal Holloway, University of London.
Your future career
BSc Geosciences & Sustainable Energy at Royal Holloway, University of London is a new degree course that is structured to prepare graduates for a wide range of geosciences careers, including energy-related jobs in government agencies, energy companies & consultancies, NGO’s, local government and the service industry. You will develop a broad skillset in renewable energy and resources exploration together with technical skills in the field of subsurface evaluation (geophysics, geology, sedimentology) and geospatial data analysis (GIS), attractive to employers in the energy sector, environmental organisations and many other fields. Graduates will also acquire a comprehensive understanding of the Geosciences and their importance for understanding current climate and environmental issues and their role in supporting the development of a sustainable society. Throughout your course you will benefit from our excellent ties with government agencies, international energy companies and local consultancies
Our students benefit from one-to-one advice from a Careers Consultant, and industry representatives regularly visit the Department to provide careers opportunities and advice.
Fees, funding & scholarships
Home (UK) students tuition fee per year*: £9,250
EU and international students tuition fee per year**: £28,900
Other essential costs***: There are no single associated costs greater than £50 per item on this course.
How do I pay for it? Find out more about funding options, including loans, scholarships and bursaries. UK students who have already taken out a tuition fee loan for undergraduate study should check their eligibility for additional funding directly with the relevant awards body.
*The tuition fee for UK undergraduates is controlled by Government regulations. The fee for the academic year 2024/25 is £9,250 and is provided here as a guide. The fee for UK undergraduates starting in 2025/26 has not yet been set, but will be advertised here once confirmed.
**This figure is the fee for EU and international students starting a degree in the academic year 2025/26.
Royal Holloway reserves the right to increase tuition fees annually for overseas fee-paying students. The increase for continuing students who start their degree in 2025/26 will be 5%. For further information see fees and funding and the terms and conditions.
*** These estimated costs relate to studying this particular degree at Royal Holloway during the 2025/26 academic year and are included as a guide. Costs, such as accommodation, food, books and other learning materials and printing, have not been included.