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Executive Summary

A secure implementation of SSL/TLS is a critical part of modern internet security.
Consequently, one would hope that a 20-year-old side-channel attack against the
protocol would be easy to defend against. In this project, we establish that this is
not the case, illustrate how to exploit such side-channel information, and provide
a detailed investigation into how Bleichenbacher’s attack has evolved since 1998.
Our example, which we build upon throughout, demonstrates the improvements to
the attack in both a technical and non-technical way. Furthermore, our research
into optimising the algorithm provides tangible evidence regarding its most efficient
implementation.

The main findings of this project revolve around the security concerns brought about
by known padding schemes, and that the exploitation of side-channel leakage dur-
ing an SSL/TLS handshake severely damages the security of hybrid encryption that
utilises RSA. We found that many high-profile websites and implementations are or
have been vulnerable, including Facebook, PayPal, Java Secure Socket Extension
and OpenSSL. As such, the pervasiveness of this attack warrants careful consider-
ation by all those who are responsible for implementing SSL/TLS – including TLS
1.3 and its deprecation of RSA encryption. The attack exists in many forms, and
this is something that we highlight as we analyse literature from the last 20 years.
Its application is also not restricted to the SSL/TLS protocol, and our overview of
its ability to exploit the XML standard and the QUIC protocol is testament to this.
Furthermore, we discovered a mathematical error in the original algorithm, and our
research and experimentation towards the end of the project provides both insight
and improvements to the available literature.

With this in mind, the purpose of this project is to present a comprehensive under-
standing of the attack and ultimately provide evidence regarding its cause. Although
we seek the most optimised version of the attack algorithm, this project was written
in an attempt to gain and provide awareness of poor SSL/TLS implementations.
Subsequently, our intention is to uncover what must be done to successfully defend
against an adversary with the knowledge to invoke such an attack.
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Chapter 1

Introduction

Since Daniel Bleichenbacher introduced his “Million Message Attack” in 1998 [1], a
number of improvements to the original algorithm have been published. The attack
is an example of an adaptive chosen ciphertext attack and it takes advantages of
side-channel leakage in an SSL/TLS implementation. By exploiting this informa-
tion and the known structure of a common RSA padding scheme, it allows one to
conduct private key operations without knowledge of the private key [1]. As such,
an attacker can not only decrypt messages that are encrypted with an RSA public
key, but also successfully forge a digital signature for any chosen message. It was
called the “Million Message Attack” because to be successful it required around 1
million SSL/TLS connections, but today this number is significantly lower.

Although there is some good literature detailing optimisations, statistics and prac-
tical research, it is somewhat disjointed. At times some subtle details are omitted
so an explanation would improve the understanding of the reader. Furthermore,
throughout the literature, the original algorithm in [1] is regularly referred to but
there are no published examples to aid the understanding of how the algorithm
actually works. As a result, there is a need to; bridge the gaps between current
publications; provide a coherent and detailed overview of the subject area; explore
working examples of the original algorithm and its optimisations; and conduct some
research into the most recent of these optimisations.

1.1 Objectives and Motivation

Our first objective is to provide a comprehensive overview of Bleichenbacher-style
attacks, including the original algorithm and how it has evolved over the last 20
years. We will present a full example of an attack using Python, investigate how
the algorithm has been optimised, and discuss how variations of this attack still ex-
ist in modern SSL/TLS protocol implementations. The second objective we intend
to achieve is to analyse the efficiency of the attack under different parameters and
quantitatively investigate the improvements offered by the proposed optimisations.
Finally, the third objective is to provide research into the most effective way to
implement the aforementioned optimisations.

With such an array of literature on the topic of Bleichenbacher-style attacks, our
primary motivation is to present a single point-of-reference that will suffice from
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CHAPTER 1. INTRODUCTION

both a technical and practical perspective. Therefore we will be sure to not skip
over the computationally difficult details. A secondary motivation is to improve our
understanding of the literature that is available, and to demonstrate the practical
effects of such attacks on real-world security. It is highly unlikely that we will see
RSA or the SSL/TLS protocols disappearing any time soon. Therefore, as security
professionals, we would like to be able to understand precisely why we are seeing a
20-year-old attack still happening today.

1.2 Methodology

In order to achieve the above objectives, we will first look to introduce the individual
puzzle pieces that are fundamental to understanding Blechenbacher’s attack. Once
these are established, we will conduct detailed analysis alongside a comprehensive
literature study of the original paper and all subsequent publications. This alone
will provide a good level of understanding, but we will also provide an example of a
simulated attack, of which we will continue to develop as the later optimisations are
interpreted and analysed. This will then lead on to a discussion around more recent
realisations of practical Bleichenbacher-style attacks; the aim of which is to provide
education regarding how these attacks are still a threat to modern security. As such,
we will present the diagnosis for the most recent assortment of Bleichenbacher-style
vulnerabilities; in particular why 33% of internet servers were vulnerable in 2016 [2],
and why Facebook and PayPal were vulnerable in 2017 [3].

Following a successful Python implementation of the original algorithm, we will
also provide our source code for the additional optimisations. This will then allow
for some basic statistical research around the effectiveness of these optimisations.
Furthermore, we will vary the SSL/TLS model across all variations of the algorithm
in such a way that it will enable us to present statistics on a number of scenarios
that can be observed in real SSL/TLS implementations. Finally, in order to add
some clarity to the vague areas of the most recent optimisation of the algorithm,
we will present statistics from our own research after having conducted thousands
of experiments.

1.3 Structure of the Project

This project will begin with some preliminaries that are of fundamental importance
in understanding Bleichenbacher-style attacks. Therefore, Chapter 2 will provide
details on RSA, Public Key Cryptography Standards and the SSL/TLS protocols.
Once we have developed an understanding of the background to Bleichenbacher
attacks, Chapter 3 provides an introduction, description, analysis and example of
the original attack from 1998. Chapter 4 will then push the focus towards three
major improvements to the efficiency of the algorithm. These improvements will
be further demonstrated by optimising the same example presented in Chapter 3.
In Chapter 5 we will illustrate the practical Bleichenbacher-style attacks that have
been discovered over the last 4 years, including a cross-protocol attack that exploits
weaknesses in SSLv2 to compromise a previously secure TLS session key. There are
additional applications of Bleichenbacher-style attacks outside of SSL/TLS, so in
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CHAPTER 1. INTRODUCTION

Chapter 6 we will briefly explore these. In Chapter 6 we will also provide analysis
around the changes to TLS 1.3, and ultimately how these changes help but do not
eliminate Bleichenbacher-style attacks. In Chapter 7 we will exhibit and interpret
the results of our attack simulations across multiple optimisations and scenarios,
then finally in Chapter 8 we will provide some validation regarding the best way to
optimise the algorithm following the outcome of our research. The project will then
end with a conclusion, bibliography and appendix.
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Chapter 2

Preliminaries

2.1 RSA Encryption

2.1.1 The Basics

In 1978, Rivest, Shamir and Adleman published a ground-breaking paper [4] that
detailed a means of revealing a public encryption key without revealing the corre-
sponding private decryption key. Their intuition equally applies to digital signatures,
whereby revealing the verification key does not reveal the private signature key. Al-
though there are alternatives to RSA encryption and signing, such techniques have
become a cornerstone of internet security. To set up an RSA cryptosystem, we must
do the following:

1. Generate two large random prime numbers p and q, and let n = pq. For a
good level of security, p and q should ideally be a minimum of 1024 bits in
length.

2. Choose a public encryption key e such that e and (p− 1)(q − 1) are coprime,
and 1 < e < (p − 1)(q − 1). It is worth noting that e does not need to be
random, and a popular value of is e is 216 + 1 = 65537, which allows for faster
encryption than other values of a similar magnitude.

3. We set our public key as (n, e).

4. In order to generate the private key, we must calculate d ≡ e−1 mod (p−1)(q−
1). By inputting e, p and q into the Extended Euclidean Algorithm, we can
calculate the unique value d, and we set our private key as (p, q, d).

Once we have generated the keys, encryption (and decryption) is a simple process.
The message m that we wish to encrypt must first be converted to a number (or
series of numbers) less than n. Then if c represents the ciphertext, c ≡ me mod n.
Decryption simply reverses this calculation, and we have m ≡ cd mod n.

It is important to note that the above description is often referred to as textbook
cryptography – that is, simplified cryptography for educational purposes. Such an
implementation is not suitable for deployment in the real world, and in practice, one
should follow standards to implement an RSA cryptosystem (or any cryptosystem
for that matter). We will look at these standards in Section 2.2.
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CHAPTER 2. PRELIMINARIES

2.1.2 Manipulating RSA Encryption

Bleichenbacher’s attack takes advantage of the malleability of RSA, and the fact
that an attacker is able to surgically manipulate the message m without ever know-
ing m or the private decryption key d.

Suppose an attacker intercepts c ≡ me mod n. Without the private decryption
key, this information alone is not enough to decrypt m. However, it is possible for
the attacker to multiply m by some chosen value s such that when the receiver de-
crypts the message, instead of returning m mod n, it returns m · s mod n. This can
be demonstrated as follows:

c · se mod n ≡ me · se mod n

≡ (m · s)e mod n
(2.1)

This means that by multiplying the ciphertext by se and reducing modulo n, an
attacker is able to successfully manipulate the message m without ever knowing m
or the private decryption key d. We will return to this idea again in Chapter 3, as
it is crucial to understanding Bleichenbacher’s attack.

2.2 Public Key Cryptography Standards

Public Key Cryptography Standards (PKCS) are a set of standards that should be
followed to successfully implement public key cryptosystems. Textbook cryptogra-
phy is important, but if it is implemented directly then it does not provide practical
security. For example, if the same message is encrypted under the same RSA public
key, then the ciphertext for both encryptions will be the same. Ultimately, this
could lead to large scale dictionary attacks; so as a result, probabilistic encryption
provides a means of preventing such situations from arising. PKCS #1 is the RSA
cryptography standard, and in this project the focus will be on PKCS #1 v1.5 [5],
which is a recommended padding standard for SSL/TLS. This standard dictates
how one should encrypt or sign data when using the RSA public key cryptosystem,
and more specifically, how such data should be padded. We will now provide an
overview of the standard, of which the structure is of fundamental importance in
understanding the logic behind Bleichenbacher’s attack – which is detailed in Chap-
ter 3. For completeness we will also provide an overview of an alternative padding
scheme, which can be found in the more recent PKCS #1 v2.2 standard [6].

2.2.1 PKCS #1 v1.5

In order to provide an effective overview of the PKCS #1 v1.5 padding scheme [5],
we will introduce it utilising an example with appropriate explanations throughout.

Let n be an RSA modulus and let k ≥ 12 be the number of bytes that n is con-
structed from. Note that for the purposes of this project, unless otherwise stated,
an RSA modulus n will be 1024 bit; so in this situation, k = 128. The smallest
decimal value n can take is a 0x01 byte followed by 127 lots of 0x00 bytes, and the
largest decimal value n can take is one less than a 0x01 byte followed by 128 lots of
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CHAPTER 2. PRELIMINARIES

0x00 bytes. Thus 256127 ≤ n < 256128 or 28·127 ≤ n < 28·128. More generally we say:

28(k−1) ≤ n < 28k

Then, the hexadecimal block format of PKCS #1 v1.5 padding is of the form:

0x00 || BT || PS || 0x00 || D

where BT is the block type, PS is the padding string, and D is the concerned data.
The block type is one byte in length, the padding string must be at least eight
bytes in length for security purposes, and the length of the data block (|D|) will vary
depending on the application (but it must not exceed k− 11). We can assume that
the data block is at least one byte in length and therefore k must be at least twelve
bytes in length. The leading 0x00 byte ensures that the decimal value of the entire
block is always less than the modulus n when converted to an integer. The padding
string will consist of k − 3− |D| bytes.

There are 3 block types; 0x00 and 0x01 are used for private key operations such as
digital signatures, and 0x02 is used for public key operations such as encryption.

• For block type 0x00, the data block D must begin with a non-zero byte and
the padding string will consist of all 0x00 bytes.

• For block type 0x01, the data block D can begin with a zero byte since this
time the padding string contains all 0xff bytes.

• For block type 0x02, the data block D can also begin with a zero byte because
the padding string must now be generated pseudo-randomly with no 0x00

bytes. There will then be a 0x00 byte that separates the padding string from
the data block.

Bleichenbacher’s attack exposes weaknesses in the padding and encryption used to
initiate an SSL/TLS session, so block type 0x02 is of most interest to us here. In
order to encrypt a message m, we first prepend 0x0002, a random padding string
of length k − 3 − |m|, a 0x00 delimiter byte, then the message m. This process is
known as encoding, and the size of the encoding (in bytes) is equal to the size of
the modulus. For example, if the message is a267b29891b1, an example of a PKCS
conforming encoding is

0x0002 || 6d2209ac16...bf534954aa73 || 0x00 || a267b29891b1

The next step is to convert this string from hexadecimal to decimal, compute the
classic RSA encryption computation, and then convert the result back into a hex-
adecimal ciphertext. To decrypt, we simply convert the ciphertext from hexadecimal
to decimal, compute the classic RSA decryption computation, convert from decimal
back to hexadecimal, and then the blocks should be parsed to check that the struc-
ture discussed above is present. If the decrypted ciphertext is structured correctly
then we say that the ciphertext is PKCS conforming. By enforcing a padding struc-
ture, it provides the receiver with a means of confirming the validity of the plaintext
without the need for additional symmetric or asymmetric integrity checks.
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The standard also discusses a similar method for producing a signature of a mes-
sage (using block type 0x01). The main difference is that we utilise a hash function
to produce a digest of the message prior to encoding. The encoding is then con-
verted to decimal, signed with the private signature key, then converted back to
hexadecimal. This means that a receiver can verify the signature by calculating the
decimal value of the same encoding, then using the public verification key on the
decimal value of the digital signature to compare. If they match then the signature
is verified. Although this process of producing a digital signature is not particularly
important to Bleichenbacher’s attack, its relevance will become apparent when we
look at signature forgeries in Section 5.3.

2.2.2 PKCS #1 v2.2

PKCS #1 v2.2 is the newest version of the standard [6] and within this version there
exists an alternative padding scheme for RSA encryption known as RSA Optimal
Asymmetric Encryption Padding (RSA-OAEP). Again, we will explain how to pad
and encrypt using this slightly more complicated scheme by means of an example.

Suppose that n represents an RSA modulus, e is the public encryption key, d is
the private decryption key, and k is the byte length of the modulus n. Further
suppose that h(x) is a hash function such that the digest is j bytes in length. The
sender can also generate a label L to be associated with the message m. Such a label
is optional, so if it is not provided then it can be set to the empty string by default.
For this example, we will set k = 128, j = 32, and the message m to be 48 bytes in
length.

First, the sender should check that L is not greater than the maximum input of
the hash function and that the length of the message m (|m|) to be encrypted is
not greater than k − 2j − 2 bytes (or 62 bytes in this case). The reasoning behind
the restriction on |m| should become clear shortly. The sender must then generate
a padding string (PS) consisting of k − |m| − 2j − 2 0x00 bytes. Such a padding
string may have length zero, but in our case it contain 14 0x00 bytes. Once we have
these parameters, we are able to construct the data block as follows:

DB = h(L) || PS || 0x01 || m

In our example, the data block consists of 32+14+1+48 = 95 bytes. Next we mask
the data block, and to do this we first generate a random string of length j bytes,
and use this as the seed for a mask generation function (MGF). Such a function is
deterministic and takes 2 arguments; one of which is a seed and the other is our
desired output length. In a way, it is similar to a hash function, but with the added
flexibility of allowing us to also input the length of the digest we desire. We want
the digest (denoted dbMask) to be the same length as the data block. We can then
XOR this to our data block to mask it. In our case, dbMask should be 95 bytes, but
more generally it is k − j − 1 bytes. Thus it follows that:

dbMask = MGF(seed, 95)

maskedDB = DB⊕ dbMask
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CHAPTER 2. PRELIMINARIES

However, it now means that the seed must also be sent, and therefore it must also
be masked. To do this, again we can use the MGF, but instead we use the already
calculated maskedDB as the seed, and the desired length of the digest will be j = 32.
The result of this can then be XOR’ed to the seed to produce a masked seed, as
follows:

seedMask = MGF(maskedDB, 32)

maskedSeed = seed⊕ seedMask

Finally, we concatenate a 0x00 byte, the maskedSeed and the maskedDB, then the
result is denoted the encoded message (EM), which will be of length k.

EM = 0x00 || maskedSeed || maskedDB

All that remains is to convert EM from hexadecimal to decimal, compute the classic
RSA encryption computation, and then convert the result back into a hexadecimal
ciphertext. The ciphertext is then sent to the receiver, along with the label L if
applicable.

To decrypt, first the receiver must convert the ciphertext from hexadecimal to deci-
mal, compute the classic RSA decryption computation, and then convert the result
back into a hexadecimal plaintext. Such a process will return EM. Next the receiver
must derive the seed, which can be done by computing the seedMask, then XOR’ing
that to the maskedSeed.

seedMask = MGF(maskedDB, 32)

seed = maskedSeed⊕ seedMask

Now the receiver has the seed, they are able to derive DB by first computing dbMask,
then by XOR’ing that to the maskedDB.

dbMask = MGF(seed, 95)

DB = maskedDB⊕ dbMask

= h(L) || PS || 0x01 || m

The receiver should of course check the padding structure, and the standard recom-
mends the following 3 checks:

1. There must be a 0x01 byte to separate the PS from m.

2. The receiver must compute h(L) independently (denoted h′(L)), then check
that h(L) = h′(L).

3. The first byte of the originally decrypted encoded message EM must be 0x00.

If any of the checks fail then an error should be returned. However, it is important
that an attacker is not able to distinguish which of the above checks failed.

When we look at Bleichenbacher-style attacks in Chapter 3 onwards, it may seem
that a sensible countermeasure would be to switch from PKCS #1 v1.5 padding to
PKCS #1 v2.2 padding. However, it should be noted that in 2001, James Manger

13



CHAPTER 2. PRELIMINARIES

showed that the PKCS #1 v2.2 padding scheme is potentially even more susceptible
to a different chosen ciphertext attack [7]. His attack required significantly less effort
than the attacks that we will look at against the PKCS #1 v1.5 padding scheme. As
a result, although the use of PKCS #1 v1.5 may be required to maintain compati-
bility with legacy system, it is perhaps due to Manger’s attack that the PKCS #1
v1.5 padding scheme is still well recommended within the standard and continues
to be heavily relied upon.

2.2.3 A PKCS #1 v1.5 Padding Oracle

A padding oracle is an entity that an attacker can query (such as a server), and it
will simply inform the attacker as to whether the received ciphertext is PKCS #1
v1.5 conforming [1] (which for the rest of this project will be simplified to PKCS
conforming). In reality, how strict the checks are on PKCS conformance can vary, as
can the nature in which the attacker may differentiate between a valid and invalid
ciphertext. For example, consider the scenario where a server only checks to see if
the padding begins with 0x0002. If it does not begin with 0x0002 then the server
responds with an error; otherwise the attacker receives no error. If c is a random
ciphertext, n is the RSA modulus and d is the respective private RSA decryption
key, we can model such an oracle as follows:

O(c) =

{
1 if m ≡ cd mod n starts with 0x0002

0 otherwise
(2.2)

If the oracle responds to the random ciphertext c with a 1 (no error), then the at-
tacker has learnt that the ciphertext passed the PKCS conformance checks, and as
a result, they can deduce that the first two bytes are 0x0002. This is an example of
the strongest possible oracle, and it does not properly check for PKCS conformance.
However, the strength of an oracle can vary dramatically. In Section 4.2 we will
focus on a piece of literature published by Bardou et al. in 2012. However, we will
introduce their simple notation for oracle strengths in this section to demonstrate
the oracle variations that one could observe. The below is a summary of Section 2.4
of their paper [8].

Naturally an oracle will return an error if the decrypted plaintext does not be-
gin with 0x0002, so we will assume that this is always checked. However, as we saw
in Section 2.2.1, there are additional checks that could (and should) be conducted
to confirm that the padding is valid. Bardou et al. characterised these checks using
either a T to represent the check being skipped, or an F to represent the check not
being skipped. The three checks that they observed were as follows:

1. Check for the 0x00 delimiter byte somewhere after the first ten bytes.

2. Check that the non-zero padding does not contain a 0x00 byte.

3. Check that the length of the message is equal to some pre-determined length.
That is, check that the 0x00 delimiter is in a specific position. So if the
message being padded is strictly 48 bytes in length, the 0x00 delimiter should
contain no more or no less than 48 bytes after it.
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Based on the above, Bardou et al. define 5 oracles:

TTT: This oracle skips all 3 checks and so it will return 1 for any plaintext that
begins with 0x0002.

TFT: This oracle only checks that the non-zero padding does not contain a 0x00

byte. So it will return 1 for any correctly padded plaintext where the message is of
any length, as well as plaintexts that do not contain a 0x00 delimiter.

FTT: This oracle only checks that the padded plaintext contains a 0x00 delim-
iter byte somewhere after the first 10 bytes. So it will return 1 for any correctly
padded plaintext where the message is of any length, as well as plaintexts that con-
tain a 0x00 byte within the first 8 padding bytes.

FFT: This oracle will check that the padded plaintext contains a 0x00 delimiter
byte somewhere after the first 10 bytes, and that the non-zero padding does not
contain a 0x00 byte. Hence it will return 1 for any correctly padded plaintext where
the message is of any length. This is actually the same as the oracle that Bleichen-
bacher assumed in [1].

FFF: This oracle will check that the padded plaintext contains a 0x00 delimiter
byte in a specific position, and that it does not contain a 0x00 byte in the non-
zero padding prior to the delimiter byte. Hence it will only return 1 for a correctly
padded plaintext where the message is of a pre-determined length. This is an ex-
tremely strict oracle that renders Bleichenbacher’s attack practically infeasible.

Intuitively, one can see that a stricter oracle reduces the chances of O(c) = 1 for a
random ciphertext c, thus weakening the scenario for the attacker. However, based
on the above, it is clear that even with a stricter oracle, it is still possible that an
attacker could differentiate between a valid and invalid PKCS conforming ciphertext
using error messages. It should be noted that it may not necessarily be based on
whether an attacker receives an error message, but if the server responds in any way
that differentiates a valid ciphertext to an invalid ciphertext (such as response time,
dropping the connection, etc.), then that server may be considered a padding oracle
and some variation of equation (2.2) holds.

2.3 SSL/TLS

Secure Sockets Layer / Transport Layer Security (SSL/TLS) is a cryptographic
protocol that establishes and maintains a secure communication channel between
two parties (typically a client and a server) [9]. Historically, RSA has been used as
a public key encryption mechanism during the handshake protocol, and it is this
subsection of SSL/TLS that we are particularly interested in. Figure 2.1 illustrates
the SSL/TLS handshake protocol, and the messages that are marked with a * are
optional. For the purposes of this project, we are only interested in a server that
unilaterally authenticates itself according to implementation advice in [10]. As such,
we will focus on the messages that are mandatory. For clarity, we will first describe
the purpose of each of these messages, then look in more detail at the one specific
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message which is the target of Bleichenbacher’s attack.

Figure 2.1: The SSL/TLS protocol (taken from [11]).

1. ClientHello: This is sent when the client first connects to the server. This
message should contain the SSL/TLS version number, a client nonce and a
list of supported ciphersuites.

2. ServerHello / ServerHelloDone: This is a response to the ClientHello,
assuming there is an agreed set of algorithms. The message will contain the
server version number, a server nonce, a session ID, a selected ciphersuite
and the public key certificate of the server. The final part of the message is
ServerHelloDone.

3. ClientKeyExchange / ClientFinished: This message contains a randomly
generated pre-master secret (PMS), encrypted under the server’s public key.
The PMS is generated by the client and should be 48 bytes in length. The
PMS should then be appropriately padded (see Section 2.2) and the padding
process allows the server to check that the message it receives and decrypts is
valid. Finally, the ClientFinished message is sent, which will contain a MAC

on all messages that have been sent to far – the key to which is derived from
the PMS.

4. ServerFinished: Assuming the server can decrypt the ClientKeyExchange

message and confirm its validity, the server is also able to deduce the PMS. As
a result, the final message sent by the server is a MAC of all the messages which
have been sent – again deriving the key from the PMS.

The section of the handshake protocol that Bleichenbacher’s attack looked to exploit
was the ClientKeyExchange message and its subsequent decryption (as detailed in
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Section 7.4.7 of [10]). As far as the server is concerned, if the ClientKeyExchange

message has a valid structure then it can extract the PMS and continue with the
protocol. However, a problem arises when the ClientKeyExchange message does
not have a valid structure. The obvious reaction would be to return an error to the
client, but such a reaction is precisely what enabled Bleichenbacher’s attack. In fact,
the server must continue with the protocol, being sure not to leak any information
as to the invalidity of the ClientKeyExchange. Some examples of information leak-
age include log file differences, timing differences, dropping the connection or error
messages being sent.

Although implementing SSL/TLS in such a way that thwarts Bleichenbacher’s at-
tack is not a trivial task, guidance on a successful implementation is outlined in
Section 7.4.7.1 of [10]. Hence, it should be made clear that the version of the attack
we are discussing here and will be discussing in Chapter 3 should no longer be fea-
sible. However, in Chapter 5 we will look at some more recent developments that
build on Bleichenbacher’s foundations, and there we will see that sufficient counter-
measures against Bleichenbacher-style attacks still warrant careful consideration 20
years on.
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Chapter 3

Bleichenbacher’s Padding Oracle
Attack

In 1998, Daniel Bleichenbacher published an adaptive chosen ciphertext attack that
exploited weaknesses in RSA-based protocols [1]. In this section, we will describe and
analyse the details of this historical attack, as well as presenting an implementation
in Section 3.3 to aid understanding.

3.1 The Idea Behind the Attack

Suppose that n and e make up an RSA public encryption key of a server and d is
the private decryption key of the server. Furthermore, suppose that such a server
incorporates PKCS #1 v1.5 padding and that it also suffices as a padding oracle
whereby, for a chosen ciphertext c, the server indicates whether the corresponding
plaintext is correctly padded – as discussed in Section 2.2. If these properties hold,
then any message which is encrypted using the RSA public key can be deduced
without knowing the respective private key d. Additionally, if the server also uses
the private key d for signing messages, then this attack can also successfully forge a
digital signature – again without knowing the private key d. One can see that such
a situation rapidly deteriorated the security of SSL/TLS because the PMS represents
a single point of failure if it is compromised. As a result, if an attacker were able
to record an SSL/TLS session then mount such an attack to recover the PMS, they
would be able to decrypt all communications between the client and the server.
With the above in mind, the basis for the attack is as follows:

Suppose an attacker intercepts the ClientKeyExchange message m from the SS-
L/TLS handshake protocol. By its construction, we know that the ciphertext is
PKCS conforming and therefore, if the attacker were to query the oracle with the
ciphertext, the oracle would return 1. As a result, the attacker knows that the first
two bytes of the decrypted message m are 0x0002. However, if the attacker were to
intercept an arbitrary ciphertext c which is not PKCS conforming, then the attacker
can choose an integer s, compute c′ ≡ c · se mod n, and then query the oracle with
c′. If the oracle returns 1 then the attacker knows that c′ is PKCS conforming, and
from equation (2.1) in Section 2.1.2, this means the attacker now knows that the
first two bytes of m · s are 0x0002 for some chosen integer s. Note that the first
scenario is an example of the second scenario with s = 1.
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Based on the above, if k = 128 is the byte length of our modulus n, then we
know that the smallest value that m · s can take is 0x0002, followed by 126 0x00

bytes. If this is the case then we have:

m · s ≥ 28k−15

≥ 2 · 28k−16

≥ 2 · 28(k−2)
(3.1)

Similarly, the largest value that m · s can take is one less than 0x0003, followed by
126 0x00 bytes. Hence it follows that:

m · s ≤ 28k−15 + 28k−16 − 1

≤ 2 · 28k−16 + 28k−16 − 1

≤ 2 · 28(k−2) + 28(k−2) − 1

≤ 3 · 28(k−2) − 1

(3.2)

By setting B = 28(k−2), we now have assurance that if c · se mod n = (m · s)e mod n
is PKCS conforming, then it follows that 2B ≤ m · s < 3B. After finding the first s
value, denoted s0, we set c0 ≡ c·(s0)e mod n. The attack then proceeds by collecting
many more s values such that c0(s)

e is PKCS conforming, and this iterative process
allows the attacker to reduce the interval that contains m0 ≡ m·s0 mod n until there
is only one possible value, say a. That is, the upper bound of the interval is the same
as the lower bound of the interval. As a result we have m0 = a ≡ m · s0 mod n, and
so we can calculate m ≡ a · (s0)−1 mod n, where m ≡ cd mod n. Again, it is worth
noting that if c was already PKCS conforming then s0 = 1, and m0 = a = m. In
an SSL/TLS handshake protocol, m corresponds to a padded PMS, so the attacker
can extract the PMS by removing the padding, and now they are able to decrypt
any subsequent communications that took place. We will now provide the details of
the algorithm which Bleichenbacher presented in 1998, then in Section 3.3 we will
demonstrate an implementation of the attack.

3.2 The Details of the Attack

First we will present the algorithm which was published in [1], and then we will
explain the logic behind each step.

3.2.1 The Attack Algorithm

For clarity, Bleichenbacher denotes the variable Mi to be the set of closed intervals,
which are computed after a successful si has been found, such that m0 is contained
in one of the intervals of Mi.

Step 1: Blinding
Given an integer c, choose different random integers s0, then check, by accessing the
oracle, whether c(s0)

e mod n is PKCS conforming. Again note that from Section
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2.1.2, (m · s0)e = c(s0)
e mod n. For the first successful value s0, set

c0 ← c(s0)
e mod n

M0 ← {[2B, 3B − 1]}
i← 1

So, at this stage we know that 2B ≤ m · s0 ≤ 3B − 1. As mentioned in Section 3.1,
if c is already PKCS conforming then we can set s0 = 1 to simplify the above.

Step 2: Searching for PKCS conforming messages

Step 2a: Starting the search
If i = 1, then search for the smallest positive integer s1 ≥ n/(3B), such that the
ciphertext c0(s1)

e mod n is PKCS conforming.

Step 2b: Searching with more than one interval left
Otherwise, if i > 1 and the number of intervals in Mi−1 is at least 2, then search for
the smallest integer si > si−1, such that c0(si)

e mod n is PKCS conforming.

Step 2c: Searching with one interval left
Otherwise, if Mi−1 contains exactly one interval (say Mi−1 = {[a, b]}), then choose
integer values ri, si such that

ri ≥ 2
bsi−1 −B

n

and
2B + rin

b
≤ si <

3B + rin

a

until the ciphertext c0(si)
e mod n is PKCS conforming1.

Step 3: Narrowing the set of solutions
After si has been found, the set Mi is computed as

Mi ←
⋃

(a,b,r)

{[
max

(
a,

⌈
2B + rn

si

⌉)
,min

(
b,

⌊
3B − 1 + rn

si

⌋)]}
(3.3)

for all [a, b] ∈Mi−1 and
asi − 3B + 1

n
≤ r ≤ bsi − 2B

n

Step 4: Computing the solution
If Mi contains one interval of length 1 (so Mi = {[a, a]}), then set m← a(s0)

−1 mod
n and return m as the solution to m ≡ cd mod n. Otherwise, set i ← i + 1 and go
to step 2.

1The bound we have presented for ri is actually a correction to the bound given in the original
paper and all subsequent literature. This will be explained in step 2c of Section 3.2.2.
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3.2.2 An Explanation of the Algorithm

In this section, we will analyse how each step of the algorithm works.

Step 1: Blinding
This step is quite self-explanatory and probably the easiest step to understand. In
order to commence the attack, we require a ciphertext to be PKCS conforming. If
we are trying to decrypt an intercepted ciphertext c, such as a ClientKeyExchange

message in the SSL/TLS handshake, then by its own construction it should be
PKCS conforming. As a result we can set s0 = 1. However, if we are trying to
forge a digital signature, then c will not be PKCS conforming. In such a situa-
tion, c represents the initial encoding of a digital signature prior to the computation
which would typically be computed using the private signature key. Therefore, as
discussed in Section 2.2.1, c will begin with 0x0000 or 0x0001. Clearly we can no
longer have s0 = 1, so instead we should try random or increasing integer values of
s0 until c(s0)

e mod n is PKCS conforming. Once we find such a value of s0, we set
c0 ≡ c(s0)

e mod n and then we are done.

So m ≡ cd mod n is the message that we wish to decrypt, and from Section 2.1.2,
by finding an s0 such that c0 ≡ c(s0)

e mod n is PKCS conforming tells us that
m0 ≡ m · s0 mod n begins with 0x0002. We know the value of s0, so if we can
calculate m0 then we can deduce m. Therefore, steps 2, 3 and 4 work on reducing
the possible values of m0 until there is only one option.

Step 2a: Starting the search
This step will always happen immediately after step 1, and since it only happens
when i = 1, we know that it will only take place once. The aim of this step is to
find the smallest positive integer s1 such that c0(s1)

e mod n is PKCS conforming.
In his algorithm, Bleichenbacher informs us that s1 ≥ n/(3B) because, for smaller
values of s1, c0(s1)

e mod n cannot be PKCS conforming. However, what is omitted
from the paper is why c0(s1)

e mod n cannot be PKCS conforming for smaller values
of s1. Therefore we will provide the reasoning here:

We wish to find s1 such that m1 = m0 · s1 mod n is a PKCS conforming plain-
text. Hence for some positive integer r, it follows that

m1 = m0 · s1 − rn

We do not know the value of r but we can create upper and lower bounds for r.

r =
m0s1 −m1

n
(3.4)

Since both m0 and m1 are PKCS conforming, we know that 2B ≤ m0,m1 < 3B,
and so we can calculate the highest and lowest possible values of r:

2B · s1 − (3B − 1)

n
≤ r ≤ (3B − 1)s1 − 2B

n

which implies r ≤ 3B · s1
n
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So if s1 < n/(3B) then r < 1 and therefore r = 0. This means that m1 = m0 · s1
without the need for modular arithmetic. Therefore m1 < n, and since s1 > 1, it
should now be clear that m1 can never be less than 3B, which means it can never be
PKCS conforming. In fact, the smallest m1 can be is 4B, and this is when m0 = 2B
and s1 = 2. Therefore, it makes sense to start our search for s1 with dn/3Be.

Starting with s1 = dn/3Be, we query the oracle to check for PKCS conformance,
and increase s1 by 1 each time until we find a ciphertext c0(s1)

e which is PKCS con-
forming. Unfortunately we do not yet have a means of narrowing down the search
for such a value beyond this, and as such, the search for s1 is a naive search whereby
the first two bytes of c0(si)

e mod n will be uniformly distributed. As a result, the
chances of finding a successful s1 (where the first two bytes of c0(s1)

e are 0x0002) is
(1/256)2 = 1/65536. Once we have found s1, we move on to step 3. We will look at
step 3 first before returning to step 2b and step 2c as it will help to aid understanding.

Step 3: Narrowing the set of solutions
The first time we enter step 3 we have found s1 and we know that m0 ∈M0 = [a, b],
where a = 2B and b = 3B − 1. We also know that m1 = m0 · s1 − rn, and that
both m0 and m1 are PKCS conforming plaintexts. We wish to generate a new set
of intervals M1, but it should be noted that we do not know the values of m0 or m1;
therefore we do not know the value of r.

Since m1 = m0 · s1 − rn, it follows that m0 =
m1 + rn

s1
.

Furthermore, we know that 2B ≤ m1 ≤ 3B − 1, therefore, it must hold that

2B + rn

s1
≤ m1 + rn

s1
≤ 3B − 1 + rn

s1

2B + rn

s1
≤ m0 ≤

3B − 1 + rn

s1

So we now have a new bound for m0, but we still do not know the value of r.
However, using equation (3.4) from step 2a, we can bound r using the lowest value
of m0 = a and the highest value of m1 = 3B − 1, then the highest value of m0 = b
and the lowest value of m1 = 2B. Hence the range for r is

a · s1 − 3B + 1

n
≤ r ≤ b · s1 − 2B

n
(3.5)

By using each possible value of r, we are now able to calculate new intervals for m0.
So if there are three possible values for r then we will generate three new intervals
for m0. Clearly we already have a lower and upper bound for m0, so we are only
interested in lower bounds which are greater than the previous lower bound, and
upper bounds which are less than the previous upper bound – otherwise the new
bound can be ignored (hence the maximum and minimum functions). Once we have
our new intervals, we take the union of the intervals and the result is M1.

Of course the above can be generalised for when we enter step 3 and i > 1. In
this case we should replace s1 with si, m1 with mi, M0 with Mi−1 and M1 with
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Mi. It is also worth mentioning that it is entirely plausible that Mi−1 will consist of
multiple intervals for m0. If this is the case then all possible values of r should be
calculated for each of the intervals from Mi−1, and using these intervals and their
respective r values, we can create a set of new intervals. Then we can take the union
of all the new intervals, and as a result Mi may consist of a single interval for m0, or
again contain multiple possible intervals for m0. In general, the number of possible
r values is very low, and often there is only one possible value. However, all possible
values of r must be utilised to avoid missing an interval which does actually contain
m0. When we have finished step 3 we go to step 4, and unless we only have one
interval containing only one value, we set i = i + 1 and then go back to step 2.
Therefore we will look at step 2b and step 2c before step 4.

Step 2b: Searching with more than one interval left
This is a simple (but time-consuming) step where we must search for the smallest
positive integer si > si−1 such that the ciphertext c0(si)

e mod n is PKCS conform-
ing. Since there are multiple possible intervals which contain m0, in general we are
unable to bound si in such a way that speeds up this step. Thus, as was the case in
step 2a, the search for si is a naive search; so the chances of finding a successful si
is 1/65536. Once we have found a successful value of si, we proceed to step 3.

Step 2c: Searching with one interval left
At first glance, this step seems quite complicated. However, if Mi−1 contains only
one interval, then Bleichenbacher implemented a clever technique which is able to
determine si in an extremely efficient way, and divide the size of the interval roughly
in half for each iteration of step 2c.

Notice that in equation (3.3), to form a new interval, we must divide the respective
numerators by si. For a set value of r, if si is twice the size then the resulting
interval will be half the size. Therefore, this step works by choosing ri first in such a
way that we guarantee si to be at least twice the size of si−1. This is done as follows:

We can rearrange equation (3.5) to create a bound for si, giving us

2B + rin

b
≤ si <

3B + rin

a
(3.6)

Now, since we want si ≥ 2si−1, we need to bound ri such that:

2si−1 ≤
2B + rin

b
≤ si <

3B + rin

a

Hence

2si−1 ≤
2B + rin

b

ri ≥
2bsi−1 − 2B

n

ri ≥ 2
bsi−1 −B

n

It should be noted that our bound for ri is a correction on the bound given in the
original paper [1], as well as all subsequent literature that we have observed. That
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being said, this bound does not actually improve the attack, but does make it mathe-
matically sound. The reason our bound for ri does not make a difference is as follows:

By substituting our bound for ri into equation (3.6), it simplifies to 2si−1 ≤ si,
as expected. On the other hand, by substituting the original bound for ri into equa-
tion (3.6), it actually simplifies to 2si−1− (2B)/b ≤ si. Since si−1 and si are positive
integers, we would only be testing additional values of si if (2B)/b ≥ 1. However,
since b is the upper bound of an interval within Mi−1, it cannot be less than 2B,
and due to the structure of the padding, b can never equal 2B either. Therefore
(2B)/b < 1, and so the first value of si will be the same in both situations.

So to complete step 2c, we choose the smallest possible integer ri which satisfies
the above equation, then starting with the smallest possible integer value si which
satisfies equation (3.6), we check to see if the ciphertext c0(si)

e mod n is PKCS
conforming. We continue to increase si by 1 until we find a PKCS conforming ci-
phertext. If we have tried all values of si satisfying equation (3.6) without success,
then we increase ri by 1 and start again with a new batch of possible values for
si. We continue in this way until we find a valid PKCS conforming ciphertext. By
defining ri first, the search for the next value of si is significantly more efficient than
the naive search implemented in step 2b. Furthermore, it also means that when we
narrow the set of solutions in step 3, the larger value of si improves the efficiency
here too.

Step 4: Computing the solution
This is the final step of the algorithm and we only remain in step 4 if Mi contains
only one interval of length 1. So Mi = [a, a], hence the upper bound and lower
bound for m0 are the same. This means that m0 = a.

As discussed in step 1, we know that m0 ≡ m · s0 mod n, which means that
a ≡ m · s0 mod n. So we now know the value of a, and we know the value of
s0 from step 1. Therefore m ≡ a(s0)

−1 mod n, we return m as the solution to
m ≡ cd mod n, and we have successfully decrypted the ciphertext c without the pri-
vate decryption key d. If c was already PKCS conforming then s0 = 1 = s−10 mod n.
Hence we can set m = a as the solution to m ≡ cd mod n to simplify this last step.

3.3 An Implementation of the Attack

I will now provide (some of) a simulated example of this attack in an attempt to
discover the PMS (encoded within m) from an SSL/TLS handshake, encrypted with
a 1024 bit RSA public key. Our example assumes an attacker has access to an FFT
oracle, and the parameters are purposely chosen to demonstrate all possible steps of
the algorithm. For simplicity, we will omit the process of converting from hexadec-
imal to decimal and vice-versa (instead all workings will be in decimal). You can
find the primes used to generate this RSA modulus and the respective private key
in Appendix A. Appendix A also contains our Python source code for this example.
Unfortunately, the real numbers used in this example provide poor visual clarity
and perhaps inhibit understanding. Based on this, we will utilise “. . . ” to represent
most of the digits, and the full numbers can be found in Appendix B.
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Suppose that n is the RSA modulus of the server, e is the public encryption key, and
c is an intercepted ciphertext. As an attacker, gaining knowledge of these values is
trivial, so suppose the attacker obtains the following such values:

n = 1584975239... e = 65537 c = 5267820764...

We begin in step 1 and start by setting s0 = 1, then querying the oracle with
c(1)e mod n. Since this is an intercepted ciphertext, it is reasonable to assume
that it is PKCS conforming. Therefore, we can set c0 ≡ c(1)e mod n = c, m0 ≡
m · 1 mod n = m, and we can also define the first interval for m0 using B = 28·126:

M0 = {[5486124068..., 8229186103...]}

Although we are able to bound m0, the size of this interval is 21008 – which is clearly
too large to conduct an exhaustive attack such as a chosen plaintext attack. Instead
we set i = 1 and move onto step 2a, where we can begin reducing the size of the
interval.

This is a time consuming step, but the aim is to find the value of s1. We know
that s1 ≥ n/(3B) = 19260.4131109. Thus we start with the value s1 = 19261,
and continue to query the oracle with c0(s1)

e mod n, increasing s1 by one with each
query. We stop when we find the first value which implies c0(s1)

e mod n is PKCS
conforming. In this example we find that s1 = 82005.

We now move onto step 3, and here we will use s1 to reduce the interval con-
taining m0. Using equation (3.3), first we need to calculate the possible values of r.
By inputting a as the lower bound of M0, b as the upper bound of M0, and si as our
newly found s1, we discover that the possible values of r are 3 and 4. With this in
mind, we will now form two possible intervals which may contain m0; one for r = 3
and one for r = 4. We calculate these new intervals and then take the union of the
intervals. Therefore, if the two new intervals overlap then M1 will consist of one
interval again, however, if they do not overlap then M1 will consist of two intervals.
In this example we find that the intervals do not overlap, but we have improved our
bound on m0:

M1 = {[5798403242..., 5798436691...],

[7731182022..., 7731215472...]}

By establishing this value of s1, step 3 has reduced the bound on m0 by more than
99.997%, with the number of possible options falling to just under 2992.7. We now
go to step 4, immediately set i = 2 and then return to step 2. We never return to
step 2a, so now we will either go to step 2b or step 2c. In this example M1 contains
more than one interval, and so we must go to step 2b.

We begin the search for s2 starting with the value s1 + 1. We then continue in-
creasing s2 by 1 until the ciphertext c0(s2)

e mod n is PKCS conforming. It turns
out that in this scenario s2 = 355351 and we move onto step 3 again.

Now we will use s2 to reduce the size of the interval containing m0. However,
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this time we can see that there is currently more than one possible interval left
for m0. Nonetheless, the process is very similar, and using equation (3.3), we can
calculate all possible values of r for all the given intervals. For the first interval in
M1, the only possible value of r is 13, and just like before, we can now calculate the
new interval. However, when we look at the second interval in M1, it turns out that
there are no possible integer values of r. As a result, m0 cannot possibly be in that
interval, thus the interval is discarded. There is no need to take the union of the
intervals as we only have one, and so we return this as M2:

M2 = {[5798417049..., 5798424768...]}

We have now reduced the number of possible options for m0 to just under 2989.6.
Again we go to step 4, set i = 3, and then return to step 2. This time around, M2

contains only one interval, and so we enter step 2c. In step 2c, the first thing to do
is find the smallest possible integer value of r3 which guarantees s3 to be at least
twice the size of s2. Using s2 and M2, we can calculate r3 = 27, then using r3 we
can calculate a bound (or set of bounds) which must contain s3. So using equation
(3.6), we know that 738034.690857 ≤ s3 < 738036.146457, and therefore we can
cycle through these possible integer values of s3 until the ciphertext c0(s3)

e mod n
is PKCS conforming. If we do not find a valid s3 then we set r = r + 1, generate a
new bound for s3 and try again. We continue until s3 is valid, and in this scenario
(when r = 29) we find that s3 = 792705. Once we have established s3, we proceed
to step 3, continuing as previously discussed. This then provides us with M3:

M3 = {[5798417049..., 5798419869...]}

After 3 iterations of step 3 we have now reduced the number of possible options for
m0 to just over 2988. Throughout the rest of the example, we actually continue to
loop through step 2c and step 3, with the values of si increasing and the interval
containing m0 decreasing. In fact, after finding s989, we enter step 3 for the last
time and it produces our final bound for m0. It makes sense that completion of the
attack took around this number of iterations since we know from Section 3.2.2 that
step 2c chooses si in such a way that it more than halves the size of the interval
containing m0 for each iteration. Our final bound is M989:

M989 = {[5798419205...7665573158, 5798419205...7665573158]}

This time when we enter step 4 it is true that Mi contains only one interval of length
1. So here we have m0 = a, we set m ≡ a(s0)

−1 mod n, and return m as the solution
to m ≡ cd mod n. From step 1 we have s0 = 1, so s−10 ≡ 1 mod n, and therefore
m = a:

m = 579841920589406700723097951151738986844836670449757912367054444

235659537243763227900123637103641595191709903054542208387271409740203

912969123044117570729427967848283325577889366122243437084764362681915

869339573392245686648058962247658928156442361659628221880783291029946

0172654764392298172087597665573158

For confirmation we can check that our value of m is correct by encrypting it and
comparing to the ciphertext which we started with. Finally, we will convert from
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decimal to hexadecimal, and we can see that m has the appropriate padding scheme
– from which we can extract the targeted PMS.

m = 0x00021d2536e6983f9e2a8d833006dbb868feac2d61e2aa41a85d05bc50236

da522ac153cb68f7edcd0edd96add4db5dba0e2e79c0de130cd6493cfc54669178fdc

2ae0ec4879d9149c7cc4f369c52a004c8eb83f20bc8f89a0cce55519359b06e4544a0

a08c8d8e2b75103c097c6fdb5d1723ea033e91a20ba5e67b00c835926

PMS = 4c8eb83f20bc8f89a0cce55519359b06e4544a0a08c8d8e2b75103c097c6f

db5d1723ea033e91a20ba5e67b00c835926

This particular example required 342445 queries to the oracle to decrypt the ci-
phertext.
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Chapter 4

Improvements to the Attack

Looking back at the example in Section 3.3, one can observe that the majority of
queries to the oracle took place in step 2a and 2b. In fact, of the 342445 oracle queries
required to conduct the attack, 336091 (more than 98%) took place in either step 2a
or step 2b. Considering we only entered those steps once and step 2c 986 times, the
example clearly demonstrates the inefficiencies that step 2a and 2b contain. As a
result of this, two different pieces of literature set about improving the performance
of these 2 steps. The motivation behind the improvements were different for each
set of authors, but in this section we will detail these improvements and summarise
their impact on the original algorithm.

4.1 Improvements from 2003

As mentioned previously, the version of the attack that we have discussed so far
should not be practically feasible. In fact, in his paper (Section 5 of [1]), Ble-
ichenbacher explained that a good SSLv3 implementation would make the attack
practically infeasible – even in 1998. This implementation not only conducts all
the checks of an FFF oracle, but it must also check the version number which has
been encoded within the ClientKeyExchange message. So the sender will follow
the PKCS #1 v1.5 padding scheme, the message should be 48 bytes in length, and
the first 2 bytes of the message will represent the SSL/TLS version number (0x0300
for SSLv3). This can be seen in figure 4.1; and the version number was initially
recommended to prevent a rollback attack (see Section 7.4.7.1 of [10]).

Figure 4.1: PKCS #1 v1.5 padding with the SSL/TLS version number (taken from
[1]).

Bleichenbacher advised that if a ciphertext decrypted to a correctly padded PKCS
conforming plaintext, but with a version number that did not match what was ex-
pected, then the server should issue an error which is indistinguishable to an error
that may be issued when the plaintext is not PKCS conforming.
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In such a situation, the search for each si becomes practically infeasible. This is
because, with a naive search, in order to find an si such that c0(si)

e mod n passes
all of these checks, c0(si)

e mod n must begin with 0x0002, there must be a 0x00

delimiter byte 49 bytes from the end, the padding string must not contain a 0x00

byte, and the first two bytes of the message must be 0x0300. For a 1024 bit RSA
modulus, we can calculate the probability of this as follows:

P (s) =

(
1

256

)2

·
(

1

256

)
·
(

255

256

)77

·
(

1

256

)2

≈
(

1

256

)5

· 0.74

≈ 6.73× 10−13

That works out to be roughly one in 1.5 trillion attempts to find such a value for
si – which is clearly infeasible. However, in 2003, Kĺıma et al. published a paper
[11] demonstrating a new side-channel attack which made attacks against SSL/TLS
implementations incorporating a version number check possible. Furthermore, they
also presented a number of improvements to Bleichenbacher’s algorithm, particularly
to step 2b. In this subsection, we will look at both of these important findings.

4.1.1 The Version Number Side-Channel Attack

Kĺıma et al. noticed that although SSL/TLS implementations were checking for
the version numbers, it had not been properly specified precisely what should be
done if the message was correctly padded but the version number was incorrect.
As a result, of the 611 random servers that they tested, two thirds of them leaked
information on this error in a way that was distinguishable to other PKCS padding
errors. This meant that although conducting the attack was still computationally
expensive, it was within the realms of feasibility. The oracle that they discovered,
which they termed a Bad Version Oracle (BVO), is very similar to that of the FFF
oracle discussed in Section 2.2. If k is the byte length of an RSA modulus, they
describe a plaintext message m as S-PKCS conforming if it is PKCS conforming,
mj 6= 0x00 for all j ∈ {3, k − 49}, and mk−48 = 0x00, where mj represent the jth

byte of the message m. Using this, if major and minor represent the 2 bytes that
make up the SSL/TLS version number, they modelled the BVO as follows:

BV O(m) =

{
1 if m is S-PKCS conforming, mk−47 6= major, and mk−46 6= minor

0 otherwise

Their observations showed that if a message was not S-PKCS conforming then in
general, the servers would generate a random PMS and the protocol would break
down at a later point. Conversely, if the message was S-PKCS conforming with the
correct version numbers, then it would extract the correctly padded PMS and continue
with the protocol. However, if the message was S-PKCS conforming but with an
incorrect version number, the servers would issue a distinguishable error. They had
proven that such Bad Version Oracles existed, but to exploit this behaviour they
still needed to improve the efficiency of Bleichenbacher’s algorithm. As such, we will
now look at how they optimised the attack to practically exploit a BVO.
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4.1.2 Improving Step 2b

We have already seen how inefficient step 2b is. However, what we have not yet men-
tioned is that the stricter the oracle is, the more likely we are to enter step 2b (as
we will demonstrate in Chapter 7). Given that the BVO modelled above hints at an
extremely strict oracle, it made sense for Kĺıma et al. to focus on optimising step 2b.

Their idea was based on the fact that in step 2c, we can apply certain rules to
bound the next value of si. However, if you have more than one interval left, these
rules still hold for each of the intervals in isolation. After some experimenting they
noticed that it was significantly more efficient to start step 2c for each possible inter-
val in parallel – and they called this the Parallel-Threads Method. So if |Mi−1| > 1,
for each interval in Mi−1, we start a thread of step 2c as if it were the only interval
in Mi−1. Then each of the threads will take it in turns in a cyclic fashion to query
the oracle (BVO). When any one of the intervals finds a valid si, we proceed to
step 3 with this value of si, thus projecting it onto all intervals contained in Mi−1.
Any intervals which disappear as a result of step 3 are discarded, and as normal, we
proceed to step 4, then back to step 2. If the number of intervals is now back to one
then we enter step 2c as before, but if it is still greater than 1, we repeat the above
Parallel-Threads Method. In Section 3.3.2 of their paper [11], they do actually pro-
vide an upper bound on |Mi−1|, whereby if Mi−1 contains more intervals than this
bound, then the Parallel-Threads Method should not be used. However, the bound
is very high, and after the thousands of simulations that we have conducted, it is
unlikely that such a situation will arise. However, it should be mentioned that due
to time restrictions, we have not implemented any simulations that emulate a BVO.
It could well be that the significantly stricter criteria imposed by the BVO on the
attacker may warrant this bound to be considered.

In Section 4.1 of [11], they present their results for local simulations of this at-
tack, and for a 1024 bit RSA modulus, the mean and median number of oracle calls
were 20,835,297 and 13,331,256 respectively. They also conducted the attack on a
real server, which allowed for 52.68 oracle calls per second. With such a server,
they concluded that half of all attacks conducted with their set up would succeed
in less than 70 hours and 18 minutes. Hopefully, one can now see that with this
optimisation and the existence of practical Bad Version Oracles, conducting their
attack back in 2003 became practically feasible.

Furthermore, coupled with their findings that two thirds of the tested servers were
vulnerable may seem worrying, and from a theoretical cryptographic perspective, it
is. However, they also emphasise that if administration of a server is done properly
then the number of connections and length of time required to conduct the attack
should almost certainly be noticed in the log files. As a result, an attacker can
be blocked from initiating any further connections to the server. Nonetheless, this
ingenious optimisation equally applies to the stronger oracles discussed in Section
2.2, and in Chapter 7 we will look at the effects it has on these oracles.

Finally, it should also be noted that there were two other minor optimisation pre-
sented in this piece of literature. Ultimately, their effects are negligible, so we will
not present them in detail. However, we will summarise them for completeness.
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The first optimisation takes advantage of the fact that if a plaintext message m
is PKCS conforming then the attacker knows that the first 2 bytes are 0x0002.
However, depending on the strength of the oracle, the attacker may also know any
of the following:

• There is no 0x00 byte in the first 8 padding bytes

• The byte in position mk−48 is 0x00

• The byte in position mj is non-zero for all j ∈ {3, k − 49}

• The bytes in position mk−47 and mk−46 represent a known SSL/TLS version
number

Using this information, they were able to replace the previous lower bound of 2B
with a new lower bound E, which takes into consideration the minimum value of the
non-zero padding. Similarly, they replaced the previous upper bound of 3B−1 with
a new upper bound F , which takes into consideration the fixed position of the 0x00

delimiter byte. This slightly reduces the number of possible options for m prior to
any queries to the oracle.

The second optimisation is based on their observation that it is possible to find
the next valid si using a linear combination of two previous valid values of si. More
specifically, if sa and sb are both valid multipliers, then we can try and search for the
next valid si by setting si = β · sa − (β − 1) · sb for some integer value β. Although
this is interesting, for small values of β the reduction in the size of Mi is slow, and
for large values of β the reduction is faster, but suitable values of β take a long time
to find. As a result, they suggest that although this method could be used, it offers
very little when compared to the Parallel-Threads Method discussed previously.

4.1.3 The Impact on our Example

As a means of demonstrating the effectiveness of the Parallel-Threads Method, let
us consider the example from Section 3.3. Recall that after finding s1 = 82005, we
produced a new bound for m0, but it contained more than one interval:

M1 = {[5798403242..., 5798436691...],

[7731182022..., 7731215472...]}

Instead of entering step 2b from the original algorithm, we now enter step 2c twice
in parallel; once with the first interval and once with the second interval. Just as we
demonstrated in the example of step 2c, we must first establish the respective values
of r2 for each of the two intervals in M1. We can then establish a suitable bound
for potential values of s2 for each of the intervals. Once we have this information,
we can let the intervals take it in turns to query the oracle, alternating between
their potential values of s2. Also, as before, if we have tried all possible values
within the bound then we set the respective r2 = r2 + 1 to create a new bound and
continue. In this situation, it turns out that the first interval finds a value for s2
first, so we stop looking with the parameters for the second interval, take the value
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of s2 and proceed to step 3. As expected, using this method we find s2 = 355351,
and since we only entered step 2c from this point on previously, the same is true here.

However, using this modified version of the algorithm, the attack now requires 69136
queries to the oracle to decrypt the ciphertext. This figure is impressive, but in the
original example, 273,346 queries were made to the oracle in step 2b to find s2. In
this example, just 37 queries were made to the oracle to find s2. This is an extremely
impressive optimisation and we will analyse this more in Chapter 7.

4.2 Improvements from 2012

Between 2003 and 2012, there did not appear to be much of a focus on Bleichenbacher-
style attacks. In some respects this may have been due to good implementation ad-
vice which prevented side-channel leakage, but the more likely reason is that focus
was elsewhere. Then, in 2012, Bardou et al. published a detailed paper looking at
Bleichenbacher-style attacks in a completely new setting [8]. Their focus was cryp-
tographic hardware, where imported symmetric keys were often encrypted under an
RSA public key using PKCS #1 v1.5 padding. They had discovered that the ora-
cles discussed in Section 2.2 existed in real hardware, including Gemalto Cyberflex
Smartcards, RSA SecurID devices and Estonian ID cards (which can be used for au-
thenticating an SSL/TLS session and producing legally binding digital signatures).
As a result, Bleichenbacher-style attacks against hardware were a reality, but they
were not efficient enough to be practical against lower powered devices. This is be-
cause on devices such as a smart card, a single RSA decryption (which is required for
each oracle query) is slow when compared to the speed offered by a server [8]. Based
on this, Bardou et al. set about improving the efficiency of the algorithm. Their 2
areas of focus included trimming the initial interval M0 and improving the efficiency
of step 2a. In this subsection, we will detail these improvements and demonstrate
how they affect our example.

4.2.1 Trimming M0

Throughout this project, we have focused heavily on the fact that an attacker can
multiply a plaintext message m0 by some integer s, without having access to the
private decryption key or the plaintext itself. However, in Section 2.2 of [8], they
make the observation that it is also possible to divide the plaintext message m0 by
t, simply by multiplying it by t−1 mod n. This works exactly the same as we saw in
Section 2.1.2, but instead we multiply the ciphertext by t−e:

c · t−e mod n ≡ me
0 · (t−1)e mod n

≡ (m0 · t−1)e mod n

If the decimal value of the plaintext message m0 is divisible by t, then m0 · t−1 mod
n = m0/t (without the mod n). If m0 is not divisible by t then the result will be
some unknown value. However, this is very interesting as it allows the attacker to
manipulate m0 in such a way that they can reduce the interval which contains m0

before the attack really begins. To demonstrate this, we will first need to present
Proposition 1 from [8], along with its proof for completeness.
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Proposition 1. Suppose u and t are coprime positive integers such that u < 3t/2
and t < 2n/9B. If m0 and m0 · ut−1 mod n are PKCS conforming then t divides
m0.

Proof.

m0 · u < m0 ·
3t

2
< 3B · 3t

2
< 3B · 3

2
· 2n

9B
= n

Hence it holds that m0 · u mod n = m0 · u because it is less than n.
Now let x = m0 · ut−1 mod n. Since x is PKCS conforming, we have x < 3B. So

xt < 3Bt < 3B · 2n

9B
=

6n

9
< n

Hence it also holds that xt mod n = xt because it is less than n.
Therefore, we have x · t mod n = x · t = m0 · u mod n = m0 · u. As a result, t must
divide m0 because u and t are coprime by definition.

This proposition means that if we can find such coprime integers u and t where, for
a PKCS conforming message m0, m0 · ut−1 mod n is also PKCS conforming, then
we know t divides m0 and that m0 · ut−1 mod n = m0

u
t
, without the mod n. Since

m0 · ut−1 mod n = m0
u
t

is PKCS conforming, it holds that:

2B ≤ m0
u

t
< 3B

Hence we have:

2B · t
u
≤ m0 < 3B · t

u
(4.1)

So if we are able to find a trimmer u
t

where t divides m0 and 2B ≤ m0
u
t
< 3B, then

we can trim the initial range containing m0 before we begin the attack. Intuitively,
one can see that we want to find a trimmer where u < t to bring the lower bound
up, and a trimmer where u > t to bring the upper bound down.

For example, suppose that m0 is a PKCS conforming plaintext, and further sup-
pose that both m0 · 45 and m0 · 87 are also PKCS conforming. Then, using equation
(4.1), it follows that:

2B · 5

4
≤ m0 < 3B · 7

8
2.5B ≤ m0 < 2.625B

Using these 2 trimmers alone, we have been able to reduce the bound which contains
m0 by 87.5% – bringing down the number of possible options for m0 from 21008 to
21005.

Clearly, the smaller the value of t, the more likely t is to divide m0. In fact, the
probability that t divides m0 is 1

t
. Furthermore, the closer u and t are, the more

likely the result of m0 · ut is to lie between 2B and 3B.

Aside from the bounds given in Proposition 1, the search for trimmers should be
restricted to 2

3
< u

t
< 3

2
, since it is not possible for trimmers to exist outside of

this range. A final note that Bardou et al. make on the subject of trimmers is
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that although a smaller value of t is more likely to generate a successful trimmer, a
larger value of t allows for more efficient trimming. Based on this, they optimised
the trimming process by taking the set of all successful trimmer denominators t,
and then computed the lowest common multiple of this set, denoted t′. Using this
much larger denominator t′ (which by construction divides m0), they then proposed
that you search for the highest and lowest numerators uh, ul which imply a valid
padding. As a result, we have:

2B · t
′

ul
≤ m0 < 3B · t

′

uh
(4.2)

Unfortunately they do not detail the most effective way to search for these trimmers,
but this is something that we will be investigating in Chapter 8. They do, however,
provide an indication as to how many oracle queries one should expend searching
for such trimmers. It seems that their suggested limits are a result of experimental
observation, but they recommend 500, 600, 2000 and 1500 queries for a TTT, TFT,
FTT and FFT oracle respectively. Nonetheless, trimming the initial interval M0

naturally improves the efficiency of Bleichenbacher’s algorithm, and after we have
presented their improvements to step 2a, we will look at how trimming M0 affects
our running example from Section 3.3 and Section 4.1.3.

4.2.2 Improving Step 2a

In Section 2.2 of [8], the authors also presented a method to speeds up step 2a
by increasing the starting value of s1 and skipping over values of s1 which cannot
produce a PKCS conforming ciphertext c0(s1)

e mod n. This optimisation consists
of two parts and we will present these now.

Their first observation was that it is possible to increase the lower bound for the
starting value of s1. Recall from Section 3.2 that in the original algorithm, we begin
with the first integer s1 ≥ n/(3B). However, we observed that when we find s1,
it must hold that m0 · s1 > n. Thus it follows that if m0 · s1 is a PKCS conform-
ing plaintext message, then m0 · s1 ≥ n + 2B. Furthermore, since m0 is PKCS
conforming, we have m0 ≤ 3B − 1. As a result the following holds:

m0 · s1 ≥ n+ 2B

(3B − 1) · s1 ≥ n+ 2B

s1 ≥
n+ 2B

3B − 1

They explained that on its own this does not make much of a difference to the
number of queries required to find s1, but if we have already applied the trimming
to M0 discussed in Section 4.2.1, then the upper bound of M0 is now b (which is less
than 3B − 1). As a result, since the largest value that m0 can take is b, we have an
improved starting bound for s1 of the form:

s1 ≥
n+ 2B

b
(4.3)

Their second improvement to step 2a stems from the fact that although we do not
yet know the value of s1, we do know that if m0 · s1 mod n is PKCS conforming,
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then it holds that 2B ≤ m0 · s1 mod n < 3B. Hence, for some positive integer j,
2B ≤ m0 · s1 − jn < 3B. Rearranging this equation, it holds that

2B + jn

m0

≤ s1 <
3B + jn

m0

Since we have trimmed the range M0 containing m0 to [a, b], it also holds that:

2B + jn

b
≤ s1 <

3B + jn

a

As a result, if there is a gap between this interval for j and j + 1, then any value of
s1 in this gap cannot be valid. More specifically, if

3B + jn

a
<

2B + (j + 1)n

b

then there must be a “hole” of values where a suitable value for s1 cannot be found.

As a result, they deduced that if for some positive integer j we have:

3B + jn

a
≤ s1 <

2B + (j + 1)n

b
(4.4)

then do not query the oracle with s1 since it cannot be valid.

Bardou et al. noted that when this “Skipping Holes” technique is used in conjunc-
tion with the trimming technique, they often found several holes, and as a result,
this optimisation leads to a significant improvement in the efficiency of the search
for s1. In fact, trimming M0 both increases the lowest possible value that s1 can
take and increases the size of the holes that will not contain a valid s1. We know
this because from equation (4.3), it is clear that a reduced upper bound b of M0

increases the size of n+2B
b

. Furthermore, if we have increased the lower bound a of
M0 and reduced the upper bound b of M0, then for a given value j in equation (4.4),

this will reduce the size of 3B+jn
a

and increase the size of 2B+(j+1)n
b

. Hence it follows
that the size of the hole between these two values will increase, and as such, the
distance between holes will be reduced.

The effects are much more noticeable when the oracle is strong since it is easier
to find trimmers. However, even with a stricter oracle, the search for s1 is still
much more efficient. In Chapter 7, we will demonstrate how these improvements
presented in 2012 and the improvements presented in 2003 (Section 4.1.2) statisti-
cally measure up against Bleichenbacher’s original algorithm from 1998. However,
in the meantime, we will return to our running example from Section 4.1.3 to see
how trimming M0 and skipping holes impacts the number of oracle queries.

4.2.3 The Impact on our Example

Our first task is to try and trim M0 by searching for suitable trimmers u
t

such that m0

and m0 ·ut−1 mod n are both PKCS conforming. Since m0 is already PKCS conform-
ing from the blinding step, it remains to find values of u and t where m0 ·ut−1 mod n
is PKCS conforming.
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Clearly we cannot continue searching for trimmers indefinitely since testing a trim-
mer costs a query to the oracle. However, as mentioned previously, Section 2.5 of [8]
recommends spending around 1500 oracle queries searching for such trimmers for an
FFT oracle. Please see Chapter 8 for our discussion on the most effective method
to find trimmers, but for the purposes of this example, the only valid trimmer that
we could find for these parameters within a limit of 1500 oracle queries was 17

14
.

Since we only have one trimmer (17
14

), there is no need to compute the lowest com-
mon multiple of the denominator since it will be the same value – hence t′ = 14.
We now need to search for the highest and lowest numerators (uh, ul) that imply a
valid padding. It turns out that uh = 17 and ul = 14, so by using equation (4.2), it
follows that:

2B · 14

14
≤ m0 < 3B · 14

17

Hence we have been able to trim the interval containing m0. As before, the actual
numbers are too big to present here, but they can be found in Appendix C. It now
follows that:

M0 = {[5486124068..., 6776976790...]}

This process of trimming has more than halved the size of the interval containing
m0, and the number of possible options has been reduced from 21008 to just under
21007.

We can now begin our search for s1, and we start our search with s1 ≥ n+2B
b

,
where b is the new upper bound of the interval M0. As a result, the first possible
value for s1 is 23389. Using this value and increasing by one after each failed oracle
query, we continue to searching until we find a valid s1. However, this time we can
skip any “holes” that we know will not contain a valid s1.

For example, by setting j = 1 in equation (4.4), we have:

3B + n

a
= 28892.12

2B + 2n

b
= 46776.01

Hence it follows that s1 cannot be between 28893 and 46776. Similarly, by setting
j = 2, we find that s1 can also not be between 57783 and 70163.

As we would expect, it turns out that s1 = 82005, but one can see that we have
been able to find this value using significantly less calls to the oracle. In fact, in our
previous examples, we required 62745 calls to the oracle to find s1. However, here
we have been able to find s1 with just 28352 oracle queries (a reduction of nearly
55%). The rest of the algorithm would then continue as described previously.

It should be clear that the most efficient version of the algorithm would be to
combine the trimming of M0, the optimisation of step 2a, and the optimisation of
step 2b. As a result, by implementing all optimisations from Section 4.1 and 4.2,
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we are now able to decrypt the ciphertext with just 34719 calls to the oracle. This
is 10 times more efficient than our original algorithm implementation in Section 3.3;
which took 342445 queries to the oracle to decrypt the ciphertext.
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Chapter 5

Recent Bleichenbacher-style
Attacks in Practice

Although we have demonstrated the practical implications of Bleichenbacher-style
attacks on SSL/TLS, the oracles that we have observed so far should not exist within
more modern implementations. However, that is not to say that padding oracles do
not exist at all. In this section, we will analyse how Bleichenbacher-style attacks
have exploited side-channel leakage over the last 4 years to perform private key
operations without knowledge of the private key.

5.1 New Side-Channel Attacks against SSL/TLS

In 2014, Meyer et al. published a paper [12] identifying four new side-channel attacks
on SSL/TLS, one of which utilised error messages and three of which were timing-
based. All of these attacks took advantage of a PKCS #1 v1.5 padding oracle,
and this piece of literature was the first to demonstrate Bleichenbacher-style attacks
against SSL/TLS using time-based information leakage. After practical testing of
these four new side-channel attacks, in three of them they were able to correctly
recover the PMS. We will describe all four of these new side-channel attacks in this
subsection, but first we will introduce the fundamentals for timing-based attacks on
the SSL/TLS protocol.

In Section 4.1.1, we briefly mentioned that if the ClientKeyExchange message does
not decrypt to a conforming plaintext, then the server should generate a random
PMS and continue with the protocol. As a result, this means that no error message
is sent at all and the protocol will break down at a later stage. This thwarts the
Bleichenbacher-style attacks discussed so far, and as such, this was the countermea-
sure which was advised in Section 7.4.7.1 of both TLS 1.0 [13] and TLS 1.1 [14].
However, clearly it will take a small amount of time to compute a random PMS,
so there may well be some information leakage here. With this in mind, TLS 1.2
changed the recommendation, instead advising that a random PMS should always
be generated, regardless of whether the ClientKeyExchange message is PKCS con-
forming (Section 7.4.7.1 of [10]). If this is implemented correctly then processing
times for a correctly and incorrectly padded ClientKeyExchange message should
be identical. Nonetheless, even with such advice available, it was these differences
in processing times that Meyer et al. exploited in their time-based side-channel
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attacks.

5.1.1 Error Messages in Java Secure Socket Extension

Java Secure Socket Extension (JSSE) is the build-in SSL/TLS implementation for
Java, and this side-channel attack was a result of an implementation bug within
JSSE.

Meyer et al. explained that an improper padding check and the processing of the
subsequent PMS meant that they could force the server to respond with different
error messages (Section 5 of [12]). More specifically, we know that if the PMS is
of a fixed length, then there is a pre-determined padding string which should be
non-zero. If a 0x00 byte is found in the non-zero padding string, then the padding
check should fail and the server should respond with a HANDSHAKE FAILURE alert
[12]. Although this was true, it was not always true. For a 2048 bit and 4096 bit
RSA modulus, Meyer et al. noticed that if the plaintext began with 0x0002 and
a subsection of the non-zero padding contained a 0x00 byte preceded by non-0x00
bytes, then instead the server would respond with an INTERNAL ERROR alert. Such an
error would leak the information required to conduct Bleichenbacher’s attack. With
a 2048 bit RSA modulus, this subsection makes up 57% of the padding string, and
for a 4096 bit RSA modulus, this subsection makes up 81% of the padding string.
Furthermore, they also discovered that if the penultimate byte of the PMS was 0x00
and all preceding bytes of the PMS were non-0x00, then the server would also re-
spond with an INTERNAL ERROR alert. This second discovery was true for a 1024 bit,
2048 bit and 4096 bit RSA modulus. Please see Figure 7 in [12] for more information.

Following their findings, they conducted some analysis and explained that assum-
ing the decrypted message begins with 0x0002, for a 2048 bit RSA modulus, the
chances of receiving an INTERNAL ERROR is 35.6%, and for a 4096 bit RSA modulus,
the chances are 74.4% [12]. One can see that this results in a very strong oracle
where the Bleichenbacher attack can be efficiently executed. In fact, with a 2048
bit RSA modulus, the median number of oracle queries was 37399, and with a 4096
bit RSA modulus, the median number of oracle queries was 27744. Although it is
possible for an attacker to receive an INTERNAL ERROR when working with a 1024
bit RSA modulus, on average this will only happen 0.24% of the time [12] – thus
providing a much weaker oracle. This bug has now been fixed.

5.1.2 Timing Differences in OpenSSL

Their second side-channel attack was discovered after noticing that OpenSSL did
not implement the TLS 1.2 countermeasures to prevent Bleichenbacher-style attacks
exploiting the processing time to generate a random PMS (as discussed in Section
5.1). Instead, the random PMS was generated if and only if the ciphertext was
not strictly PKCS conforming. As a result, this time leakage allowed an attacker
to distinguish between a conforming and non-conforming ciphertext. The timing
difference between a valid and invalid ciphertext was extremely small (around 1.5
microseconds), and they did also note that they were unable to confirm that this
time difference was entirely a result of the random number generation. This is due
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to the presence of other branches and loops in the OpenSSL source code [12].

Nonetheless, a side-channel existed, but it turned out to only be theoretical. This
was because although they could distinguish between a valid and invalid ciphertext,
the oracle that this allowed for was extremely strict. OpenSSL may have failed to
implement a random PMS generator before validating the padding structure, but the
padding check was sufficiently strict. Assuming a 2048 bit RSA modulus, the imple-
mentation checked for the first two bytes being 0x0002, a 205 byte non-zero padding
string, a 0x00 delimiter byte, a 48 byte PMS, and correct major and minor version
number bytes following the delimiter byte. As a result, even if the ciphertext begins
with 0x0002, the chances of the ciphertext complying with the padding check is
roughly 1 in 37 million [12]. Hence they were clearly not able to provide any practi-
cal results, but they did predict that such an attack would require around 5 trillion
oracle queries. Despite the fact that this timing leakage could not be exploited, the
theoretical attack made the OpenSSL implementation cryptographically insecure.
Therefore, this provides a good argument for following the most recent standards at
the time (TLS 1.2), and generating the random PMS before validating the padding.

5.1.3 Java Secure Socket Extension Internal Exception

This is another side-channel attack that Meyer et al. discovered in JSSE, but unlike
the first, this one utilises timing differences instead of the direct error messages dis-
cussed in Section 5.1.1. They were able to confirm that the implementation strictly
checked for the message beginning with 0x0002, contained at least eight non-zero
padding bytes, and contained a 0x00 delimiter byte. However, it did not check for
a pre-defined length of the PMS; so this implementation is very similar to the FFT
oracle that we discussed in Section 2.2.3. The slight difference was that although an
internal exception was thrown if the padding was invalid, the attacker would not re-
ceive a distinguishable error message. As a result, it thwarts Bleichenbacher’s attack
if we are using error messages alone. On the other hand, exception handling in Java
can introduce timing delays [12], and Meyer et al. were able to measure this delay.
The result of their measurements showed a time delay of around 20 microseconds,
and so they were able to construct a timing oracle.

A model of such an oracle would process a valid padding quickly and return a
1, and if the padding is invalid, then the internal exception would slow down the
processing speed – thus the model returns a 0. By being able to distinguish between
a valid and invalid padding in this way provides an oracle of almost equal strength
to the FFT oracle discussed previously. By using the optimised Bleichenbacher al-
gorithm discussed in Chapter 4, with a 2048 bit RSA modulus, they were able to
conduct the attack on Java 1.7 in 55 hours, querying the oracle 20662 times [12].
This number is slightly higher than they expected, but Meyer et al. attributed this
to the presence of false negatives. In such a scenario, false negatives can be easily in-
troduced through networks delays. For example, an unexpected network delay may
cause a ciphertext with a valid padding structure to be deemed invalid based on the
processing time. In order to counter this time leak, they did suggest introducing a
time constant, which essentially looks to reduce the difference in processing time to
zero. Another countermeasure that they did not mention would be to reduce the
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probability of a random ciphertext passing the padding validity check. Therefore,
like OpenSSL, JSSE could require the PMS to be strictly 48 bytes in length, and
contain valid SSL/TLS version numbers. This would ensure that the strength of
the oracle would be so low that the attack would become infeasible – even with a
20 microsecond processing time difference between a valid and invalid padding.

5.1.4 Unexpected Timing Behaviour in Hardware Appli-
ances

The final side-channel attack that Meyer et al. were able to establish existed in F5
BIG-IP and IBM Datapower, both of which used a Cavium NITROX SSL acceler-
ator chip [12]. The oracle that they observed initially seemed strong, accepting any
padding structure that began with 0x0002. However, the most interesting point
about this side-channel attack was that the oracle also accepted any padding struc-
ture that began with 0x??02. So here, 0x?? represented any one of the 256 possible
options for a byte. As a result, the oracle became much weaker.

Again, it should be noted that valid and invalid ciphertexts were not being dis-
tinguished through error messages. Just like in the previous two findings, Meyer
et al. noticed a distinguishable difference in the processing times of valid and in-
valid padding structures. More specifically, their measurements showed that if the
ciphertext was valid (began with 0x??02), then the processing time was around 10
to 15 microseconds longer than if the ciphertext was invalid. As such, they could
construct an oracle which would return 1 if the ciphertext was considered to be valid.

Since, in such a scenario, it was not guaranteed that valid messages would begin
with 0x0002, they had to modify Bleichenbacher’s algorithm to cater for the fact
that the first byte could be any one of the 256 possible options. This modification
can be found in Section 9 of [12], but the main difference is that instead of knowing
that a valid plaintext is between 2B and 3B, we now know that it is between xB
and yB, where x = 256a + 2, y = 256a + 3, and a = 0, 1, 2, ..., 255. They then
used these additional intervals to optimise the search for values of si, which in turn
allowed them to reduce the interval containing the message m0.

After 500 simulated test runs, they established a median of 4700 queries to decrypt
a given ciphertext using this method. In general, this low number of queries is based
on the fact that it is relatively easy to find a value of si that ensures m0 · si mod n
lies within any one of the 256 intervals discussed above. Furthermore, they also
performed a real attack – which required 7371 oracle queries. As mentioned previ-
ously, the difference between a simulated and a real attack is the existence of false
negatives. Network delays may give the impression that a valid ciphertext is invalid
or an invalid ciphertext is valid.

All things considered, the four new side-channel attacks that we have discussed
in this section from [12] show that a great deal of care should be taken when imple-
menting SSL/TLS. It is important that the padding structure is strict, but it is also
important to ensure information is not leaked regarding the validity of the strict
padding check; be it via error messages, timing delays, or some other means.
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5.2 DROWN

DROWN is an acronym for Decrypting RSA with Obsolete and Weakened eNcryp-
tion, and it is a Bleichenbacher-style cross-protocol attack which exploits weake-
nesses in SSLv2 to decrypt a TLS connection. It was published in August 2016 by
Aviram et al. [2], but before we can explain how DROWN works, we must first
introduce some additional preliminaries.

5.2.1 SSLv2

Recall from Section 2.3 that after the client has sent the ClientKeyExchange mes-
sage, this is followed up by a ClientFinished message. In all the Bleichenbacher-
style attacks discussed so far, the MAC contained within this ClientFinished mes-
sage will be incorrect. This is because the attacker does not know the PMS at this
stage, and therefore they cannot derive the MAC key. However, this makes no differ-
ence to an attacker because they have already obtained the information they want
by observing the response of the server to the ClientKeyExchange. Nonetheless,
the structure and message content that we discussed in Section 2.3 is true for all
versions of SSL/TLS, with the exception of SSLv2. There are a few small differences
in SSLv2. For clarity, the first two differences we will mention are that the PMS is
now referred to as a master key (MK), and the ClientKeyExchange is now referred
to as the ClientMasterKey. The third difference we will mention is extremely im-
portant for the DROWN attack and we will explain it here.

Figure 5.1: The SSLv2 protocol (taken from [2]).

As can be seen in Figure 5.1, we have an additional message which is sent from the
server to the client known as the ServerVerify message. According to [15], the
purpose of this message is to authenticate the server to the client. To construct the
ServerVerify message, the random nonce (rc) sent by the client is encrypted using
the server write key (deduced from the MK). Thus, in theory, only the server with
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knowledge of the RSA private decryption key should be able to produce such a mes-
sage. Additionally, the implementation advice in Section 5.2.1 of [15] recommends
the ServerVerify message to be sent after the ClientFinished message. However,
Aviram et al. noticed that this was not the case, and so the protocol shown in Figure
5.1 represent the reality of an SSLv2 implementation. With this in mind, once an
attacker has received the ServerVerify message, they know the ciphertext, they
know the plaintext (rc), but they do not know the key (server write key).

Although SSLv2 was quickly proven to be insecure, it may be enabled based on
the fact that it seems sensible to assume that any encryption is better than no en-
cryption. This is perhaps even more relevant for legacy systems which have not been
updated, and so SSLv2 is better than plaintext communication – perhaps sufficing
as a last point of call if SSLv3 and above cannot be negotiated. Furthermore, if a
server supports SSLv2, as well as more modern versions, then it is fair to assume
that they will share the same RSA key and certificate. This may be considered
poor key management, but Section 9.2 of [2] explains that there is no agreed way
to ensure that an X.509 certificate is version specific. Web servers (such as Apache)
also lack configuration options to enable good key separation, and from a com-
mercial standpoint, there is a much greater cost involved in obtaining individual
RSA keys and certificates for each SSL/TLS version. Finally, although it is an old
implementation, Aviram et al. observed that an SSLv2 server will still check the
validity of the PKCS #1 v1.5 padding, and if it is not valid, then a randomly gener-
ated MK will be used instead (as discussed in Section 5.1 and advised in [13] and [14]).

Hopefully, from the above, one can see that if an attacker were to send the same in-
valid ClientMasterKey to the SSLv2 server twice, then each ServerVerify response
would be encrypted under a different server write key from a different randomly
generated MK. However, if an attacker were to send the same valid ClientMasterKey

to the SSLv2 server twice, then each ServerVerify response would be encrypted
under the same server write key. This is because the MK would be extracted
from the valid ClientMasterKey message on both occasions. We will return to this
important result in Section 5.2.3.

5.2.2 40 Bit Export Encryption

We mentioned in Section 5.2.1 that, upon receipt of the ServerVerify message, the
attacker knows the ciphertext and the plaintext, but they do not know the key. If
the length of the key is 128 bit, then a brute force attack is infeasible. However,
if the length of the key is 40 bit, then an attacker can conduct an exhaustive key
search to deduce the key. Note that when we say a 40 bit key length, what we really
mean is a 128 bit key, of which 40 bits are secret. As a result of the Crypto Wars,
SSLv2 allows the use of a 40 bit export cipher key. Since the client can choose the
ciphersuite, negotiating this weakened key length is trivial.

In Figure 5.1, we can see that the ClientMasterKey consists of a ciphersuite se-
lection and MK itself. Suppose the ciphersuite selected by the attacker is a 40 bit
export cipher, then MK is a concatenation of MKclear and MKsecret [2]. If the length
of MK is 128 bits, then the length of MKclear is 88 bits and the length of MKsecret is
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40 bits. As expected, MKclear is sent in the clear so is not encrypted and we can
assume is public knowledge. However, MKsecret is padded according to the PKCS #1
v1.5 padding scheme, then encrypted with the public RSA key of the server. This
means that the encoding will begin with 0x0002, the 6th byte from the end will be
the 0x00 delimiter, and the message will contain just 5 bytes. The padding string
in between should be non-zero. A ciphertext that decrypts to a plaintext with such
an encoding will now be referred to as an SSLv2 conforming ciphertext. Again, we
will return to this in Section 5.2.3

5.2.3 Implementing DROWN

As mentioned previously, perhaps it was fair to assume that SSLv2 is better than no
encryption at all. However, this attack demonstrates that SSLv2 can devastatingly
weaken the security of all later SSL/TLS version implementations. Although this
attack does not guarantee that we can decrypt a specific TLS session, it does allow
an attacker to decrypt one of many TLS sessions. As such, the attacker could mon-
itor a victim over a short period of time to collect a large number of such sessions
before conducting the attack. Furthermore, the server that is running TLS may be
completely invulnerable to a Bleichenbacher-style attack, but if it shares an RSA
key with another server that supports SSLv2, then the DROWN attack will succeed
by using the SSLv2 implementation as an oracle. As a result, the attacker will learn
the session key for a specific TLS connection. Perhaps even more surprising is that
to conduct such an attack, the attacker does not ever need to communicate with
the TLS server, and the victim does not ever need to communicate with the SSLv2
server. In addition, a lot of the work can actually be conducted offline, and such an
attack can take place and be successful many weeks or months after the initial TLS
session was established.

We have already discussed some of the foundations of the attack, but it is still
quite a complicated attack path. Therefore, we will break the attack down into
smaller steps.

Step 1: Observe and collect around 1000 TLS handshakes
Suppose that the victim is communicating with a server over a secure TLS imple-
mentation that follows all advice to counter Bleichenbacher-style attacks. Further
suppose that this server also shares an RSA key with an SSLv2 implementation.
The first thing the attacker should do is collect around 1000 TLS connections. Avi-
ram et al. explain that we can expect to be able to decrypt roughly 1 in every 1000
connections using DROWN (Section 3 of [2]).

Step 2: Convert the TLS ciphertext into an SSLv2 conforming ciphertext
The purpose of this step is to find a means of manipulating a TLS ciphertext such
that the result is an SSLv2 conforming ciphertext. So, assuming the RSA modulus
is 2048 bit, as it stands, the decrypted TLS plaintext m will begin with 0x0002,
then contain a 205 byte random padding string, then a 0x00 delimiter, and finally
a 48 byte PMS (potentially beginning with the appropriate major and minor version
numbers). We need to convert this into a ciphertext such that when it is decrypted,
the padding will begin with 0x0002 and the 6th byte from the end is 0x00. To do
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this, they used the idea of trimmers, as introduced in Section 4.2.1.

So, for each of the intercepted TLS ciphertexts c, an attacker should choose a se-
lection of the best trimmers s ≡ ut−1 mod n (see Chapter 8), and then construct
modified versions of the TLS ciphertexts, c1, such that c1 ≡ c · se mod n. We now
need to discover whether or not any of these newly constructed TLS ciphertexts are
SSLv2 conforming. Note that if c1 is SSLv2 conforming, then we also know that
m1 ≡ cd1 mod n = m · u

t
.

Step 3: Checking for SSLv2 conformance
So we have a selection of modified TLS ciphertexts but we need to find out if any of
them are SSLv2 conforming. To do this, the attacker should begin an SSLv2 session
with the server which shares the RSA encryption key. They should ask for a 40 bit
export cipher, and as a result, the SSLv2 server will expect 88 bits of the symmetric
key to be sent in the clear and 40 bits of the symmetric key to be encoded and
encrypted using the RSA public key.

The attacker can choose the 88 bits of MKclear to be sent over, and this is followed by
any one of the modified TLS ciphertexts. Suppose that the modified TLS ciphertext
is not SSLv2 conforming. In this scenario, the SSLv2 server will decrypt MKsecret,
discover that the padding is invalid, and then generate a random 40 bit MKsecret.
This will be concatenated with MKclear to form MK, and the server will then calculate
the ServerVerify message by encrypting rc under the 128 bit key. The result will
be sent to the attacker.

Once the attacker has received the ServerVerify message, they know it is the
encryption of rc, so they know the plaintext, the ciphertext, and the first 88 bits of
the 128 bit key. As a result, they can brute force the remaining 40 bits to establish
MK (or more specifically, the server write key). Now the attacker should begin a
new session with the same set-up and send the same modified TLS ciphertext. Once
again, the server will reply with a ServerVerify message. This time the attacker
can test to see if the encryption key used to produce this message is the same as the
key they have just discovered. However, since the modified TLS ciphertext was not
SSLv2 conforming, the server will have generated a new random 40 bit MKsecret, and
so the keys used to encrypt will not be the same. Based on this, the attacker knows
that the modified TLS ciphertext was not SSLv2 conforming, and they move onto
the next one.

Now suppose that the modified TLS ciphertext is SSLv2 conforming. As before, the
attacker sends it to the SSLv2 server and then, when they receive the ServerVerify
message, they can use an exhaustive key search to establish MKsecret and construct
MK. However, when they send the same modified TLS ciphertext for the second time,
since it is SSLv2 conforming, on both occasions the server will have identified the
valid padding and extracted the 5 least significant bytes. As a result, the same
key will be used to produce the ServerVerify message on the second run of the
protocol, and the attacker can quickly check this. Thus, the attacker knows that
the modified TLS ciphertext is indeed SSLv2 conforming. In addition to this, they
now also know that the respective plaintext begins with 0x0002, the 6th byte from
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the end is 0x00, and the 40 bit key that they have just brute forced represents the
last 5 bytes.

Since the attacker has found a modified TLS ciphertext which is SSLv2 conforming
(denoted c1 = me

1 mod n), they know 8 bytes of the corresponding plaintext, and
we have almost bootstrapped Bleichenbacher’s original algorithm. Note that an at-
tacker should be expected to obtain an SSLv2 conforming ciphertext after roughly
10,000 oracle queries (or 20,000 connections to the server) [2], so Aviram et al. rec-
ommend testing 10 trimmers per TLS ciphertext. Once we find a TLS ciphertext
and trimmer pair that produce an SSLv2 conforming ciphertext, we can stop search-
ing and this TLS ciphertext is the one that we will be able to decrypt using DROWN.

Step 4: Shifting known bytes
Although it may seem that we are now able to conduct Bleichenbacher’s original
algorithm, in order to do so, Aviram et al. noted that for a 2048 bit RSA modulus,
the original algorithm expects s1 ≈ 224. However, in this situation, the only s value
that we have (which could perhaps be denoted s0) is a fraction between 2

3
and 3

2
, so

clearly this is not the case. Instead they introduced the idea of shifting bytes.

The shifting bytes technique allows them to shift the known plaintext bytes (MKsecret)
from the least to the most significant bytes. For example, we know the first two
bytes and last six bytes of m1. So, by calculating m1 · 2−48 mod n, we can shift the
known six least significant bytes to become the six most significant bytes. Their val-
ues must be calculated, but as a result, we have shifted the bytes such that we now
know the eight most significant bytes. Similarly, by calculating m1 · 2−40 mod n,
we can shift the five least significant bytes to become the most significant bytes,
and this results in knowledge of the first seven bytes and last byte of the plaintext
message. We do actually utilise a shift of 2−40 for reasons that will soon be explained.

The aim of this is to find a value of s1 such that m2 ≡ m1 · 2−40 · s1 mod n is also
SSLv2 conforming. Since we can calculate the first seven bytes of m1 · 2−40 mod n,
it is easy to ensure that m2 begins with 0x0002. However, we cannot ensure that
the padding string is non-zero or that the 6th byte from the end is 0x00. As such,
we must query the SSLv2 oracle using increasing values of s1 that ensure m2 begins
with 0x0002, and check to see if the result is an SSLv2 conforming message. To
do this, we must conduct the same technique as before, whereby the 40 bit secret
is found through brute force, and then we query the SSLv2 oracle a second time
to see if the same key is used. However, in this scenario we actually only need to
brute force a 32 bit key since, due to our shift of 2−40, the last byte can already be
calculated. Once we have successfully found s1 that implies an SSLv2 conforming
c2 ≡ me

2 mod n, we definitely know the first two bytes of m2, the last six bytes of
m2, and bytes three through to seven can be deduced.

Unfortunately, the value of s1 is still not large enough to switch to the original
algorithm, and as a result, we now need to find a value of s2 such that m3 ≡
m2 ·2−40 ·s2 mod n is SSLv2 conforming. Again, we can be sure that m3 begins with
0x0002 since we can now calculate the first twelve bytes, but we still cannot ensure
that the padding string is non-zero or that the 6th byte from the end is 0x00. So, as
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before, we query the SSLv2 oracle and brute force the 32 unknown bits of the key
with increasing values of s2 > s1 until we find an SSLv2 conforming c3 ≡ me

3 mod n.
Once we have found c3 ≡ me

3 mod n, we then definitely know the first two bytes of
m3, the last six bytes of m3, and bytes three through to twelve can be deduced.

Step 5: Bootstrapping Bleichenbacher’s algorithm
That is the end of the byte shifting, but before we can just continue with the original
algorithm, we must find s3 such that m4 ≡ m3 ·s3 mod n is SSLv2 conforming. Since
we know the two most significant bytes and six least significant bytes of m3, before
querying the SSLv2 oracle, we can be sure that the message begins with 0x0002

and that the 6th byte from the end is 0x00. Unfortunately, we cannot be sure that
the padding string is non-zero, but the probability that it is non-zero for a 2048
bit modulus is 0.37; thus, finding such a value of s3 is a trivial task. So we send
c3 · se3 mod n to the oracle to see if the result is SSLv2 conforming, and since we
already know the six least significant bytes, we no longer need to brute force the
secret key. Hence, from this point forward, checking for SSLv2 conformance is a
simple task, and on average, we should find a successful value for si within three
attempts.

We have now successfully bootstrapped the original algorithm and we can continue
searching for increasing values of si until we have reduced the number of possible
options for m3 to one (i.e the interval containing the SSLv2 conforming message
m3 is of length 1). For clarity, in the DROWN attack, m3 essentially plays the
role of m0 in the original algorithm. The only major difference is that to test for
SSLv2 conformance, instead of using error messages, we query the SSLv2 server
twice and then check to see if the same 40 bit MKsecret is used both times. If it is,
then the message is SSLv2 conforming, if not, then we move onto the next value of si.

Step 6: Recovering the TLS session key
After Bleichenbacher’s algorithm has finished, we know m3 ≡ cd3 mod n (an SSLv2
conforming plaintext), but we wish to find m = cd mod n (the plaintext for one of
the TLS sessions that was initially observed). To do this, we must first reverse the
steps we took to construct m3 in Step 4 by reversing the byte shifting. As such, it
follows that:

m2 = m3 · 240 · s−12 mod n

m1 = m2 · 240 · s−11 mod n

We have now recovered m1, and this was the first SSLv2 conforming plaintext that
we constructed. So, recall from step 2 that we found a successful trimmer s ≡
ut−1 mod n such that c1 ≡ c · se mod n was SSLv2 conforming. From Section 2.1.2,
it therefore follows that m1 ≡ m · s mod n. We know s since we chose it and we
know m1 as we have just recovered it. Hence we have m ≡ m1 · s−1 mod n, or more
literally:

m = m1 ·
t

u

As a result, we have recovered the plaintext from a TLS handshake, and we can
now remove the known padding structure to recover the 48 byte PMS and derive the
corresponding session key.
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5.2.4 Final Notes on DROWN

The DROWN attack works against a server which implements both SSLv2 and later
TLS implementations. However, as we have seen above, it is equally effective against
a server that does not implement SSLv2, but does share an RSA key with a second
server that does implement SSLv2. Another interesting note here is that SSLv2 does
not just operate over HTTPS; SSLv2 can also be implemented for other protocols
such as SMTP, POP3 and IMAP [2]. Therefore, if these other protocol implemen-
tations utilise SSLv2 and the same RSA key, then they can also be exploited as an
oracle to decrypt a TLS session key. Similarly, even when other protocol implemen-
tations do not use SSLv2, if the RSA key is in any way associated to a protocol that
does implement SSLv2, then the servers will be vulnerable to DROWN.

As a result, it should be clear that enabling SSLv2 on any protocol is detrimen-
tal to the security of TLS, and it should be disabled in all circumstances. In 2016,
Aviram et al. conducted some research into the number of vulnerable servers, and
they found that a third of all HTTPS servers were vulnerable to DROWN (around
11.5 million). The full list of results can be found in Table 4 of [2], but this worryingly
large number stresses the need for carefully configured SSL/TLS implementations.

One final point that we will mention regarding the DROWN attack is that Avi-
ram et al. also discovered two implementation errors in OpenSSL for SSLv2. The
first of these (Section 4.4 of [2]) allowed an attacker to negotiate an export cipher-
suite with a server, even if the server did not explicitly allow export ciphersuites. As
a result, this enabled the DROWN attack against all OpenSSL implementations of
SSLv2. The second of these two errors (denoted Special DROWN in Section 5 of [2])
actually meant that OpenSSL servers would allow the ClientMasterKey message
to contain clear key data bytes for non-export ciphers. This means that if the
server is expecting a 16 byte encryption key of the form k[1], k[2],. . . , k[16], the
attacker can send:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1]]

Hence it follows that the attacker now only has to brute force a maximum of 256
possible options for k[1] until they have successfully produced the same ciphertext
as the ServerVerify message. Now they know k[1] they can query the server with:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1] k[2]]

The attacker does the same thing to calculate k[2], and they can continue in this
way to calculate the entire 16 byte encryption key – with an average of 128 trial
encryptions to calculate each byte. This enables an extremely efficient oracle which
drastically reduces the complexity of the original DROWN attack – since the ma-
jority of the computation is involved in brute forcing the 40 unknown bits of MK [2].
In Section 5.2.1 of [2], Aviram et al. noted that the computational costs were so
low that they could complete the full attack on a single workstation in under one
minute. As a result, it actually optimises the attack in such a way that the server
becomes vulnerable to a potentially more devastating man-in-the-middle attack.

Both of these implementation errors have now been fixed, but the Special DROWN
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vulnerability scanning performed by Aviram et al. many months after the fixes
(Table 5 in [2]) shows that, at the time, 26% of HTTPS servers were still vulnera-
ble to Special DROWN. Therefore, not only should SSL/TLS implementations be
carefully configured, but implementations utilising libraries such as OpenSSL should
maintain a well-refined patch management system.

5.3 ROBOT

ROBOT is an acronym for Return Of Bleichenbacher’s Oracle Threat, and unfortu-
nately it seems that 20 years has not proved long enough to thwart Bleichenbacher-
style attacks against RSA in TLS. In December 2017, Böck et al. published the most
recent piece of literature on the subject [3], and their research shows that almost one
third of the top 100 domains are still vulnerable to variations of the attack – includ-
ing Facebook and PayPal. Although this paper does not set out to prove anything
fundamentally new, they do provide a more up to date overview of Bleichenbacher
vulnerabilities in TLS implementations, of which there are many. In this section,
we will analyse their findings and provide an example demonstrating how they were
able to forge a digital signature using Facebook’s private RSA signature key.

5.3.1 Scanning for Bleichenbacher Vulnerabilities

We have previously seen that a server can be vulnerable to a Bleichenbacher-style
attack if there are differences in the error messages or the processing times between
a correctly padded and an incorrectly padded message. We have also seen that what
a server deems to be correctly padded varies across implementations. As such, their
research centred around sending each target server a selection of messages, each of
which was constructed to test for different vulnerabilities. The five messages that
they constructed were as follows:

M1: A correctly padded message according to PKCS #1 v1.5, where the message
begins with 0x0002, contains a non-zero padding string followed by the 0x00

delimiter, then contains the PMS which is strictly 48 bytes in length (the first
two of which contain the TLS version number).

M2: An incorrectly padded message which does not begin with 0x0002.

M3: A correctly padded message according to PKCS #1 v1.5; except this time the
0x00 delimiter byte is in the wrong position. Therefore, the length of the PMS

is invalid. This is identical to the FFT oracle discussed in Section 2.2.3.

M4: The padding starts with 0x0002, but there is no 0x00 delimiter byte at all.

M5: A correctly padded message according to PKCS #1 v1.5, where the message
begins with 0x0002, contains a non-zero padding string followed by the 0x00

delimiter, then contains the PMS which is strictly 48 bytes in length. However,
on this occasion, the bytes containing the TLS version numbers are incorrect
(similar to the Bad Version Oracle discussed in Section 4.1.1).

Not only did they analyse error messages and processing times, but they also mon-
itored connection state and any timeout issues. Additionally, in Section 4.2 of [3],

49



CHAPTER 5. RECENT BLEICHENBACHER-STYLE ATTACKS IN
PRACTICE

they mention that they observed differences based on the constructed TLS protocol
flow. For example, recall from Section 2.3 that the third message in the protocol run
involves sending the ClientKeyExchange message. This could be sent individually
or alongside the ChangeCipherSpec and Finished messages, and they found that
such variations did prompt servers to respond differently based on the validity or
invalidity of the padding structure. Furthermore, they also explained that varying
the requested symmetric mode of operation provided alternative responses. As such,
one can see that overall their vulnerability scan was extensive.

With this in mind, for each permutation of the above, they sent all five messages.
If the response for each message was not identical then they considered the server
to be vulnerable to a Bleichenbacher-style attack; otherwise they tried a different
permutation for that server. We will now briefly look at the most notable results of
this research and the final statistics presented in their paper.

5.3.2 The Results of the Scan

Böck et al. were successfully able to identify a number of vulnerable SSL/TLS im-
plementations from high-profile vendors. Full details can be found in Section 5 of
[3], but we will describe the source of the oracles for each vulnerability here.

Facebook
Firstly, if there was an error in the PKCS #1 v1.5 padding, then Facebook would
immediately reset the TCP connection. Such a situation informed them that the
padding was invalid, and thus they were able to use this as an oracle to forge a
digital signature. Facebook fixed this side-channel, but Böck et al. then identified a
second oracle. They noticed that if the ChangeCipherSpec and Finished messages
were not sent with the ClientKeyExchange message, then the server would wait
for these messages only if the padding was valid. However, certain padding errors
would cause the TCP connection to close. Facebook does actually use OpenSSL,
but these bugs were a result of custom patches exclusive to Facebook. Therefore,
identical oracles do not exist in more generic implementations of OpenSSL.

F5
They found that F5 products instantiated a number of oracles, with the most com-
mon type coming from the fact that they would respond with a handshake failure

message if the padding was invalid, and the connection could timeout if the padding
was valid. Again, their findings allowed for a strong enough oracle to forge a digital
signature.

Citrix
Vulnerable implementations run by Citrix were also identified, and the source of
these oracles came from an invalid padding causing the connection to timeout. As
this was the only difference, they did explain that the attack is inefficient, since ac-
curately detecting timeouts is difficult and requires repeated querying to the oracle.

Radware
The oracle that the Radware implementation allowed for was very strong, whereby
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messages not beginning with 0x0002 would reset the TCP connection. If the padding
did begin with 0x0002, then instead the server would respond with a decrypt error

message. Hence they were easily able to identify PKCS conforming messages.

Cisco ACE
Cisco ACE devices are no longer sold or supported, but they are vulnerable to Ble-
ichenbacher’s attack. Böck et al. discovered that different error types were answered
with different error messages. These findings suffice as a padding oracle, and since
all the ciphersuites offered by Cisco ACE devices utilise an RSA key exchange, it is
not possible to implement a secure TLS configuration on these devices.

Erlang
Erlang is a programming language [3], and they noticed that different errors prompted
different TLS error messages. Such differences allowed for a similar oracle to the one
observed in the Radware implementation. They also found that WhatsApp utilised
Erlang, and so it too was vulnerable to Bleichenbacher-style attacks.

Bouncy Castle
Bouncy Castle is a cryptographic API for Java [3], and their research identified that
TLS implementations of Bouncy Castle also leaked enough information to provide
a padding oracle. More specifically, if the 0x00 delimiter was not in the correct
position within the padding, then the server would respond with a distinguishable
error message.

WolfSSL
WolfSSL is an SSL/TLS library for embedded devices [3]. They discovered that if
the ClientKeyExchange message was sent without the ChangeCipherSpec and the
Finished messages, then a timeout would occur for a correctly padded message and
an error would occur if the padding was invalid in any way. Although they explain
that such an oracle is extremely weak, it is insecure nonetheless.

They also discovered old vulnerabilities in JSSE and MatrixSSL. We have already
discussed the vulnerabilities of JSSE in Section 5.1.1 and 5.1.3 from 2014. However,
in 2016, Juraj Somorovsky had also previously discovered padding oracle vulnera-
bilities in the open-source SSL/TLS library MatrixSSL [16]. As such, although the
previously described vulnerable TLS implementations have mainly been fixed, again
we are seeing a lack of good patch-management programmes. Therefore, it should
not be assumed that these padding oracle vulnerabilities are no longer a problem.
Furthermore, since this piece of literature was published, Böck et al. have released
vulnerabilities for additional vendors; including Palo Alto Networks, IBM Domino
and IBM WebSphere MQ. The details of these vulnerabilities can be found on their
website (https://robotattack.org/#patches), and since the research is ongoing,
more vendors will be added once fixes become available.

Of the 1 million hosts that they tested, 27,965 were vulnerable to a Bleichenbacher-
style padding oracle attack. Furthermore, of the top 100 domains (according to
Alexa), 27 of them were vulnerable – a worrying statistic for these reputable hosts.
All things considered, although conducting Bleichenbacher’s attack is not as straight-
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forward as it was in 1998, this research demonstrates that even after 20 years,
thwarting the attack is far from trivial. Therefore, great attention should be paid to
ensure that an SSL/TLS implementation does not allow an attacker to in any way
distinguish between valid and invalid padding structures.

5.3.3 Forging a Digital Signature

As a proof of concept, during their research, Böck et al. forged a digital signature of
a chosen message using Facebook’s private signature key. Throughout this project
(and most of the literature), much of the discussion has revolved around decrypting
an intercepted ciphertext. However, Bleichenbacher’s algorithm is equally capable
of forging the digital signature for any chosen message without knowledge of the
private signature key. Thus, for completeness and to aid understanding of this proof
of concept, we will now walk through an example that will allow us to forge such a
signature. It is important to note that this only works if the server uses the same
RSA key pair for encryption/decryption and signing purposes.

We will look to utilise the same 1024 bit RSA parameters from our example in
Section 3.3. However, the major difference here is that the construction of the dig-
ital signature that we wish to forge will not be PKCS conforming to begin with.
Therefore, in the blinding step, it no longer suffices to set s0 = 1. This means that
we require many more queries to the oracle, so for efficiency, let us suppose that the
oracle is a TTT oracle. Again, we will only display the first 10 digits of the numbers
in this section, but the full numbers can be found in Appendix D. To begin with
we have:

n = 1584975239... e = 65537

As mentioned previously, when we are looking to forge a digital signature, we replace
the ciphertext c from the algorithm with the encoded message that we wish to sign.
Thus, we first need to encode the message, and to do this we follow the advice in
Section 9.2 of [6], which we briefly discussed in Section 2.2.1.

As such, the encoded message EM is of the form:

EM = 0x0001 || ff ff ... ff ff || 0x00 || T

Here, T represents the Distinguished Encoding Rules described in [6]. To produce
T, we hash the message we wish to sign using a standardised hash function, and
then we append this digest to the algorithm ID for that hash function, as defined
in Section 9.2 of [6].

Suppose the message that we wish to sign is “This is our message”, and our chosen
hash function is SHA-256. Our message digest D is:

D = 0xceda6028170b54f1c8e9cf7c58c4f0783bbb368b468a6314a2d5977e6dce2d90

The identifier I for SHA-256 is 0x3031300d060960864801650304020105000420, thus
it follows that T = I || D.
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As a result our encoded message is as follows:

EM = 0001ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

fffffffffffffffffffff003031300d060960864801650304020105000420ceda6028

170b54f1c8e9cf7c58c4f0783bbb368b468a6314a2d5977e6dce2d90

For clarity, we will now take the decimal value of EM and set this to be c. Hence we
have:

c = 5486124068...

So we have our “ciphertext” c, and now all that differs between a digital signature
forgery and decrypting a message is the value of s0 in step 1 (and of course the value
of s−10 in step 4).

Now we must begin the search for s0 such that c0 ≡ c · se0 mod n is PKCS con-
forming (so with a TTT oracle, this is when c0 begins with 0x0002). It turns out
that s0 = 37448, and as a result we have a PKCS conforming c0, and we can continue
the algorithm as discussed in Section 3.3.

Upon completion of the algorithm, we have successfully “decrypted” the “cipher-
text” c0 to produce m0, and since the decryption and signing keys are the same, this
also means that m0 represents the digital signature for c0. Hence we have:

m0 = 5597129977...

However, we want the digital signature for c ≡ c0 · (se0)−1 mod n. If we denote m as
the digital signature for c, using equation (2.1) from Section 2.1.2, it follows that
m ≡ m0 · s−10 mod n. We know m0, s0, and n, and so we can calculate m.

m = 1230124984...

We must now convert from decimal to hexadecimal, and as a result, it follows that
the forged digital signature DS of the message “This is our message” is:

DS = 0xaf2cf4f06ad4ea7eb3d5c629180a3ea60fe7371b59268442774bcda21e80

a23d740b5a623479bb7569ecde829aa4cbb056b2333cb621b04cf63da7d3dc3074414

509ef6cadc1698ce6dd6fdb54df1289e802d5141581910d4a862d40fba337d7dba1d3

c8fbaf6312da9bcf54c0e26b5f992b60092fbba5e063e6f62464cd9b2b

With a strong TTT oracle and using the most optimised version of the algorithm,
it took a total of 39644 queries to the oracle to forge this digital signature. 37448 of
these queries were spent searching for s0, so one can see that forging a digital sig-
nature is much more difficult than simply decrypting an already PKCS conforming
ciphertext. However, if the oracle is strong, then such an attack is still perfectly
feasible, as we have demonstrated here.
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Additional Applications

Throughout this project we have continually referred to Bleichenbacher-style attacks
on SSL/TLS implementations. However, there are other applications that also em-
ploy RSA encryption with the PKCS #1 v1.5 padding scheme; so in this section
we will briefly look at the XML document standards and the QUIC protocol as
examples of this. We will also look at how the changes in TLS 1.3 aim to prevent
Bleichenbacher-style attacks, and ultimately whether such changes are sufficient.

6.1 Exploiting the Format of XML

In 2012, Jager et al. published a paper demonstrating practical Bleichenbacher at-
tacks against the PKCS #1 v1.5 key transport mechanism of XML encryption [17].
XML is an acronym for Extensible Markup Language, and XML encryption provides
a means of securely transporting encrypted data, with the result being represented
in the XML format. Full details of the structure can be found in [18], but for the
purposes of this project, we will just observe the basics.

The structure of an XML encrypted message will consist of a header and a body.
The header will contain message specific data such as timestamps and user informa-
tion, then the body will contain the payload [17]. If the payload is to be encrypted,
then the header will also contain the symmetric key for this encryption – which will
be encrypted under the public encryption key of the receiver. So once the message
has been received, the receiver can decrypt the symmetric key, and then decrypt the
payload.

However, the symmetric key will need to be padded before encryption, and in the
original XML standards, PKCS #1 v1.5 padding was mandatory [17]. We are no
longer exchanging multiple protocol messages, as was the case in SSL/TLS, but
instead just one message is sent containing both the header and body. Based on
this set-up, Jager et al. demonstrated two different types of Bleichenbacher-style
attacks which enabled an attacker to determine the symmetric key encrypted within
the XML header, and thus determine the payload encrypted within the XML body.
We will now briefly describe these attacks.
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6.1.1 A Timing Attack

Their first attack stems from the fact that a web service only attempts to decrypt
the XML-formatted payload if the decrypted symmetric key has a valid padding
structure [17]. Additionally, if the symmetric key is valid but the decrypted payload
is invalid, this will only be reported after all of the payload has been decrypted.
As such, the larger the payload, the longer it will take to decrypt it. As a result,
an attacker can purposely increase the size of the payload, and one can now see
that a header containing a valid (and correctly padded) symmetric key will lead to
a longer processing/response time than a header containing an invalid (and incor-
rectly padded) symmetric key.

Using this intuition, Jager et al. measured the minimum response time one should
expect from a valid key. They then concluded that if the response time of any or-
acle query fell below the minimum response time, then the padded symmetric key
contained within the XML-formatted header was not PKCS conforming. Hence it
is clear that they had discovered a practical oracle which would distinguish between
PKCS conforming ciphertexts and non-PKCS conforming ciphertexts. Using such
an oracle, they were able to invoke Bleichenbacher’s algorithm to deduce the sym-
metric key contained within the header, and in turn decrypt the payload contained
within the body.

Their experiments demonstrated that such an attack could be successful on a local
machine and via the internet. On a local machine they required a total of 321870
oracle queries, and this was able to recover the symmetric key in 200 minutes [17].
Although in general it seems unlikely that the victim would be on a local machine,
they did comment on the fact that this is realistic if an attacker can rent a virtual
machine in a cloud environment which uses the same physical hardware as the vic-
tim. Their evaluation of the attack via the internet is much less efficient due to
network delays. However, they deduced that an attacker could realistically recover
the symmetric key in less than one week. This may seem like a long time, but once
the body of the XML message has been intercepted, the contents will not change.
As such, unless the information is time-sensitive, an attacker will still be able to
recover the potentially valuable payload.

6.1.2 Exploiting CBC Mode of Operation

Their second attack looks to exploit a weakness in the CBC mode of operation for
symmetric encryption. As mentioned previously, first the symmetric key (denoted
ckey) will be decrypted, and then the payload (denoted cdata) will be decrypted using
ckey. They observed that if an error occurs during decryption, then an attacker will
be informed of this. Such an error can be the result of an error in decrypting ckey, an
error in decrypting cdata after successfully decrypting ckey, or the decryption of cdata
is successful but it cannot be parsed (it contains non-printable characters or badly
placed special characters) [17]. Note, the attacker would not be able to identify the
exact reason for the error, and they would only be sure that a modified ckey and its
padding is valid if no error was returned at all – the chances of which are small.

To avoid this problem, Jager et al. demonstrated that it is possible to modify
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cdata to ensure that it will always be parsed successfully. To do this, they changed
the contents of cdata to contain two randomly generated 16 byte blocks such that
cdata = (iv, C(1)). The ciphertext c = (ckey, cdata) is then submitted as an oracle
query, where ckey represents c0(si)

e mod n in Bleichenbacher’s algorithm. They also
adjusted the metadata to inform the web service that the payload was encrypted in
CBC mode. As such, first C(1) is decrypted, and then the result of this decryption
is XOR’ed to the iv (initialisation vector) to produce the plaintext (denoted data(1)).
When working in CBC mode, the last byte of data(1) corresponds to the number of
padding bytes that must be removed to decode the message [17]. If the last byte
happens to be 0x10, then this tells us that we should remove 16 bytes of padding,
which of course means that the message is simply an empty string. This is what the
attacker needs, since an empty string can always be parsed successfully.

Based on this, if an attacker can modify the iv in such a way that ensures the
last byte of data(1) is 0x10, then the receipt of an error is confirmation that the
padding in ckey is invalid, and hence it is not PKCS conforming. Since the chosen
iv is simply being XOR’ed to the decryption of C(1), it is possible to manipulate the
last byte of data(1) by altering the last byte of the iv. Thus, by iterating through
all possible options for the last byte of the iv, one such scenario must ensure that
data(1) decodes to the empty string. If an error is returned on all of the 256 possible
options for the last byte of the iv, then ckey is not PKCS conforming. However, if
an error is not returned for any one of the 256 possible options for the last byte of
the iv, then we have confirmation that ckey is PKCS conforming. As a result, we
can move onto the next iteration of Bleichenbacher’s algorithm.

Once again they demonstrated that this variation of the attack could be successful,
and it required the attacker to send around 322000 oracle queries. However, since
each query potentially requires 256 server requests, the total number of queries may
be as high as 82 million [17]. As such, although we no longer have the issue of net-
work delays, the sheer number of oracle queries required meant that such an attack
would take around 5 days. That being said, as was the case with the timing-based
attack via the internet, unless the payload contains time-sensitive information, such
an attack could be devastating. A final point worth noting is that the counter-
measure whereby we generate a random key if ckey is invalid does not thwart this
variation of the attack. This is because if ckey is valid, then a random key will never
be generated regardless. However, if ckey is invalid and a random key is generated,
the chances of a successful decryption and parsing of the payload are slim, and so
it is likely that we will still receive an error. Should a randomly generated key lead
to successful decryption and parsing, then the attacker can simply submit the same
query again. As a result, if the attacker receives no error for a second time, then
they can almost guarantee that ckey is PKCS conforming.

6.2 QUIC Protocol

QUIC is an acronym for Quick UDP Internet Connections and it is a key-exchange
protocol over UDP developed by Google [19]. It has reduced latency when compared
to SSL/TLS by establishing a symmetric key using less protocol messages, but ulti-
mately the end goal is the same. However, in 2015, Jager et al. demonstrated that
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the QUIC protocol is devastatingly vulnerable to Bleichenbacher-style attacks, even
though the protocol itself only allows the use of RSA for signing purposes and not
encryption [20].

The reasoning behind this vulnerability boils down to the fact that although QUIC
will utilise an RSA-signed Elliptic Curve Diffie-Hellman (ECDH) key share to estab-
lish a symmetric key with a client, if RSA keys are shared with SSL/TLS implemen-
tations, then an attacker can forge a digital signature (as shown in Section 5.3.3)
[20]. Unfortunately, the only assurance a client has with regard to the authenticity
of the connected server is a valid RSA digital signature on an ECDH key share, and
a timestamp denoting the expiration of that signature. Furthermore, such digital
signatures in QUIC are independent of the client connection, and so they can be
calculated in advance. This means that if an attacker is able to compute such a
digital signature, then a man-in-the-middle attack becomes trivial.

Although an attacker cannot exploit the QUIC protocol to forge a digital signa-
ture, when an RSA key is shared with other SSL/TLS implementations that allow
for RSA encryption, they can be exploited to forge the required digital signature for
the QUIC protocol. Since the attacker may choose the ECDH value and the expira-
tion of the signature, the digital signature can not only be calculated in advance, but
also be used on many occasions to instigate multiple man-in-the-middle attacks. As
a result, an attacker may well be motivated to forge such a digital signature, even if
the SSL/TLS padding oracle is very weak. Furthermore, since the digital signature
is independent of the client connection, it does not matter if this takes days, weeks
or even months; the end result will still allow for a man-in-the-middle attack.

6.3 Changes for TLS 1.3

TLS 1.2 has now been superseded by TLS 1.3, and therefore this should be the
standard to follow for all SSL/TLS implementations. Full details can be found in
[21], but for the interests of this project, the most intriguing change which looks
to prevent Bleichenbacher-style attacks is the deprecation of RSA encryption. In-
stead, the standard recommends Diffie-Hellman and Elliptic Curve Diffie-Hellman
(see Section 7.4 of [21]). However, despite RSA encryption being dropped from the
standard, Jager et al. were able to demonstrate that TLS 1.3 implementations are
still vulnerable to Bleichenbacher-style attacks [20].

The reasoning is very similar to that of the QUIC protocol. In TLS 1.3, first the
client will send a ClientHello message (as before) and a ClientKeyShare message.
The ClientKeyShare is the client’s contribution to an (EC)DH key. The server
then responds with a ServerHello message and a ServerKeyShare message (which
is the server’s contribution to an (EC)DH key) [21]. The server will then send a
public key certificate containing the RSA verification key, and this is followed by a
CertVerify message, which contains an RSA signature over all the messages that
have been exchanged so far in the protocol.

As with QUIC, the only assurance a client has with regard to the authenticity
of the connected server is a valid RSA digital signature. Since it is likely that RSA
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keys will be shared with earlier versions of SSL/TLS implementations, if one of these
implementations suffices as a padding oracle, then again such a digital signature can
be forged. However, in TLS 1.3, this digital signature is dependent on the client
connection, and more specifically, it is dependent on the contents of ClientHello

and ClientKeyShare, which cannot be known in advance. As a result, the major
difference between the vulnerability in QUIC and the vulnerability in TLS 1.3 is
that an attacker wishing to conduct a man-in-the-middle attack must wait for the
client to initiate a connection with the vulnerable server before conducting Bleichen-
bacher’s attack to forge the digital signature. Since forging a digital signature can
take a several hours at best, in general one would hope that the client would not wait
such a length of time, rendering this attack highly unlikely. However, the existence
of very strong and efficient padding oracles, such as those which were vulnerable to
Special DROWN in Section 5.2.4, clearly indicates that such a vulnerability should
not be ignored.

Nonetheless, removing RSA encryption from the standard will certainly help to
reduce the impact of Bleichenbacher-style attacks. Furthermore, another advan-
tage of deprecating RSA encryption is that RSA does not provide forward secrecy,
whereas (EC)DH does. From a key management perspective, it is desirable to have
this property because it provides assurance that a compromised long-term private
key will not compromise all previously established short-term sessions keys.
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Chapter 7

Attack Performance

Following on from Bleichenbacher’s original algorithm discussed in Section 3.2 and
the improvements discussed in Chapter 4, we will now present the results of our
simulations to demonstrate how effective the optimisations have been since 1998.

The figures that we will present in this section are a result of simulated attacks
against a 1024 bit RSA public key using our own source code (Python 2.7.15). The
oracles that we investigated were all of those discussed in Section 2.2.3, with the
exception of an FFF oracle. Unfortunately, under the time constraints, an FFF
oracle is too strict to obtain substantial results for this project. In an attempt to
avoid statistical anomalies, for each oracle we conducted 10000 different simulated
attacks using the original algorithm, the improvements discussed in Section 4.1, the
improvements discussed in Section 4.2, then with all improvements simultaneously.

7.1 Setting the Parameters

To ensure that our simulations accurately reflect any randomly chosen parameters,
each of the 10000 tests for the above permutations utilised different prime factors of
the modulus n, a different private decryption key d, a different PMS and a different
non-zero padding string. We did, however, ensure that the public encryption key e
remained unchanged. This value does not need to be random or secret, and setting
e = 65537 = 216 + 1 allows for efficient RSA encryption. Each test utilised a unique
seed, and the random parameters for that test were generated using this seed and
a deterministic pseudo-random number generator. Therefore, random generation
worked as follows:

Defining the seed
Instead of being random, we gave the seeds a structure to ensure reproducibility of
attack simulations. The structure was of the form:

x || y || z || 99 || n

where x represented the version of the algorithm, y represented the oracle type, z
represented the test batch number and n represented the specific test number. For
example; x was assigned 6, 7, 8 or 9, depending on the algorithm, y was a three
character binary number where a 1 represented an F and a 0 represented a T, z was

59



CHAPTER 7. ATTACK PERFORMANCE

between 0 and 9, then n ran from 1 to 1000. The 99 was simply a means of sepa-
rating these identifiers, and the use of a batch number allowed us to easily manage
the limited time available to conduct testing. As an example, the seed 9110299146
corresponds to test number 146 in batch number 2, implemented with the most
optimised algorithm against an FFT oracle. Note that in Chapter 8 we set z = 5
throughout. Greater detail regarding the structure of these seeds can be found in
Appendix E, and overall, this structure allowed for a total of 10000 tests against
each of the 4 oracles using each of the 4 variations of the algorithm.

Generating p and q
From chapter 9.2.2 of [22], we know that in order to create a 1024 bit RSA modulus
n, we must have 2511.5 < p, q < 2512. If p or q are smaller than this then we cannot
guarantee that the RSA modulus will be 1024 bits in length. Based on this, for each
test, the seed is used to randomly generate 2 integers between 2511.5 and 2512, and
then we simply set p and q respectively to be the smallest primes which are greater
than or equal to these 2 randomly chosen values.

Generating d
Once we have generated p and q, calculating the private RSA decryption key is
simply a case of finding d = 65537−1 mod (p − 1)(q − 1). This can be done using
the Extended Euclidean Algorithm, and since p and q are unique, so too is d.

Generating the pre-master secret and the non-zero padding string
To generate the PMS, we use the unique seed to generate a 48 byte string. There are
no rules regarding the structure of the PMS, so its generation is simple since any 48
byte string is valid. Similarly, to generate the non-zero padding string, we can also
use the unique seed. With a 1024 bit RSA modulus, the non-zero padding string
contains 77 bytes. Therefore, we can generate a 77 byte string as mentioned above.
However, since the padding string is non-zero, we must check to see if it contains
a 0x00 byte. If it does then we generate a new padding string and check for 0x00

bytes again. The probability of a 77 byte padding string not containing a 0x00 byte
is (255

256
)77 ≈ 0.74, so randomly generating such a padding string is not difficult.

7.2 The Results

For each version of the algorithm, we will present the results of our attack simulations
against the four oracles discussed previously. Table 7.1 contains the results using
Bleichenbacher’s original algorithm, Table 7.2 contains the results when optimising
step 2b (as discussed in Section 4.1), Table 7.3 contains the results when we optimise
step 2a and trim M0 (as discussed in Section 4.2), then Table 7.4 contains the
results when we implement all previously discussed optimisations simultaneously.
The source code for the most optimised version of the algorithm can be found in
Appendix F, and the individual optimisations are simply a subset of this source
code. All 16 permutations of oracle and algorithm type will utilise different seeds,
and as such, the parameters will vary across all 16 sets of 10000 tests. However,
10000 tests is a large sample size and provides good statistics. Therefore, we would
expect similar results if we used the same seeds across all 16 sets of simulations.

60



CHAPTER 7. ATTACK PERFORMANCE

Oracle
Original algorithm
Mean Median % that entered 2b

FFT 222806 174057 62.36%
FTT 215886 166855 61.52%
TFT 45840 26896 18.99%
TTT 42350 25534 17.39%

Table 7.1: Simulations using the original algorithm proposed in 1998.

Oracle
Kĺıma et al. improvements
Mean Median % that entered 2b

FFT 124767 86553 62.57%
FTT 123985 85245 61.77%
TFT 41720 26896 18.74%
TTT 35116 26027 17.48%

Table 7.2: Simulations using the improvements to step 2b proposed in 2003.

Oracle
Bardou et al. improvements
Mean Median % that entered 2b Trimmers

FFT 97257 16293 22.59% 1500
FTT 85917 13240 20.01% 2000
TFT 20067 3906 3.48% 600
TTT 18911 3449 3.06% 500

Table 7.3: Simulations using the improvements to step 1 and step 2a proposed in
2012, along with the recommended limits for the trimming phase discussed in Section
4.2.1.

Oracle
Bardou et al. and Kĺıma et al. improvements
Mean Median % that entered 2b Trimmers

FFT 61423 16036 22.33% 1500
FTT 56511 13478 20.13% 2000
TFT 12602 3860 3.68% 600
TTT 12347 3537 3.10% 500

Table 7.4: Simulations using all optimisations and the recommended limits for the
trimming phase discussed in Section 4.2.1.

The results in Table 7.1, 7.2, 7.3 and 7.4 clearly demonstrate that, as the oracles be-
come stricter, the mean number of queries required to conduct the attack increases.
That being said, it is the median number of oracle queries that is of most interest
to us. This is because throughout most of the sets of data, there are a few sets
of parameters that require an abnormally large number of queries to conduct the
attack. For example, one of the tests in Table 7.4 against an FFT oracle required
4402441 queries. As a result, the mean can be heavily influenced by just a handful
of such examples. Instead, the conclusion we should make from Table 7.4 is that
when using the most optimised algorithm against an FFT oracle, we can expect half
of all attacks to succeed in less than 16036 oracle queries. Of course we can deduce
similar results for an FTT, TFT and TTT oracle.

61



CHAPTER 7. ATTACK PERFORMANCE

Furthermore, by comparing the results in Table 7.1 to the results in Table 7.2,
we can see that the probability of entering step 2b is almost the same. In fact,
had we used exactly the same seeds to produce these statistics, then we would have
found that the probabilities of entering step 2b were identical. This is because the
difference between the algorithm for Table 7.1 and the algorithm for Table 7.2 is the
way in which step 2b works. So, although we have modified how step 2b works, it
does not change the likelihood of entering step 2b in the first place. On the other
hand, the results in Table 7.3 and Table 7.4 show a significant reduction in the
percentage of tests entering step 2b. Hence we can conclude that trimming M0 and
“skipping” holes in step 2a decreases the probability of entering the computationally
more expensive step 2b, and therefore aids in reducing the total number of oracle
queries to complete the attack. We should also take note of the difference between
the results in Table 7.3 and Table 7.4. Table 7.3 shows that the median number of
queries is unaffected by the absence of the Kĺıma et al. optimisation when compared
to Table 7.4. However, the mean is affected, and it is consistently higher. Therefore,
when we combine both methods, although in general it seems that the Bardou et
al. optimisation is more efficient, the Kĺıma et al. optimisation certainly helps to
reduce the average number of oracle queries overall.

Despite the above analysis, the increased efficiency brought about by these opti-
misations may be visually clearer when presented graphically. As a result, Figure
7.1 illustrates the density distribution of oracle calls for an FFT oracle using the
original algorithm, the improvements from 2003, and with the additional improve-
ments from 2012. For clarity, we have omitted the sparse data points past 400000
oracle queries. The original graph simply consisted of much longer tails converging
towards the x-axis.

Figure 7.1: The density distribution across the 3 versions of the algorithm.

As you can see in Figure 7.1, the shape of the curve for the most optimised version
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of the algorithm has a thick head and a very thin tail. Conversely, the curve for the
original algorithm has a thinner head and a much thicker tail. As expected, this
indicates that in the original algorithm, a greater volume of tests require a much
larger number of oracle queries in comparison to the optimised version. The curve
representing the Kĺıma et al. improvements does not really differ to the original al-
gorithm, although we can see that it does reduce the number of tests which require
greater than 200000 oracle queries. This is also expected, since tests that require
such a large number of queries are more likely to enter step 2b, and therefore take
advantage of the optimisation that this will invoke.

We can also graphically demonstrate the individual effects of the two separate op-
timisations against the original algorithm for both a TTT and FFT oracle. Figure
7.2 compares the Kĺıma et al. optimisation to the original algorithm, and Figure 7.3
compares the Bardou et al. optimisation (without the Kĺıma et al. optimisation)
to the original algorithm. Again, the long tails converging towards the x-axis have
been omitted.

Figure 7.2: The density distribution of the Kĺıma et al. optimisation and the original
algorithm against an FFT and TTT oracle.

By analysing Figure 7.2, we can see that the Kĺıma et al. improvement has less of an
effect as the strength of the oracle increases. We know this because the two curves
illustrated by the graph on the right (TTT oracle) are extremely similar. However,
the left graph (FFT oracle) shows that with this optimisation, the head of the curve
is slightly thicker, and the tail of the curve is thinner once we reach tests requiring
more than 200000 oracle queries. This is the behaviour we would expect since a
stronger oracle is less likely to enter step 2b, and hence the statistical differences for
a TTT oracle are smaller.

Conversely, the Bardou et al. improvement has more of an effect as the strength of
the oracle increases. The graph on the left of Figure 7.3 (FFT oracle) shows that
with this optimisation, the head of the curve is much thicker and the tail of the curve
is much thinner. However, the graph on the right (TTT oracle) shows that with this
optimisation, the head of the curve almost hits a maximum thickness of 10,000, and
the tail of the curve shrinks to a near-minimum thickness of 0 almost immediately.
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Figure 7.3: The density distribution of just the Bardou et al. optimisation and the
original algorithm against an FFT and TTT oracle.

Clearly this optimisation provides an efficient attack against an FFT oracle, but
the effects are visually clearer and stronger against a TTT oracle. Again, this is
the behaviour we would expect because it is easier to find trimmers with a stronger
oracle, and the more we trim M0, the higher our starting value of s1 becomes, and
the larger the holes containing invalid values of s1 become (as discussed in Section
4.2.2). Thus, we require less oracle queries overall to complete the attack.

Both of the above observations would be clearer if we were able to graphically
demonstrate simulations against an FFF oracle, but unfortunately we do not have
the computational power to present this. That being said, testing conducted by
Bardou et al. against an FFF oracle in Section 2.5 of [8] shows that these obser-
vations hold true. They found that, although the addition of their optimisation
did improve the attack when compared to the Kĺıma et al. optimisation alone, it
only reduced the mean and median number of oracle calls by 13.4% and 6% re-
spectively. However, in our FFT oracle experiments, when compared to the Kĺıma
et al. optimisation, the addition of the Bardou et al. optimisation in Table 7.4 re-
duced the mean and median number of oracle calls by 50.8% and 81.5% respectively.

Finally, we can also visually demonstrate how the strength of an oracle can affect
the attack. The graph in Figure 7.4 was produced using the full set of simulation
results from Table 7.4, and it displays how the most optimised version of the attack
performs against all 4 of the oracles discussed above. Again, we have omitted the
tails converging towards the x-axis.

We can now clearly see that the full optimisation makes the attack extremely effi-
cient across all four oracles, with very few attack simulations requiring more than
50,000 oracle queries. Furthermore, we can also see that the FFT curve and the
FTT curve are extremely similar. As is the case with the TFT curve and the TTT
curve. From this we can deduce that not allowing a 0x00 byte in the first 8 padding
bytes has a relatively low impact on the number of oracle queries. This makes sense
since the probability of there not being a 0x00 byte in the first 8 bytes of padding
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Figure 7.4: The density distribution across the 4 oracles using the most optimised
version of the algorithm.

is (255
256

)8 ≈ 0.97. We can make a similar observation by comparing the TTT curve
to the FTT curve. The only difference between these oracles is that an FTT oracle
requires a 0x00 delimiter byte after the first 8 padding bytes. As is shown in Fig-
ure 7.4, this has a slightly larger impact on the number of oracle queries – which
also makes sense, since the probability of there being such a 0x00 delimiter byte is
(1− (255

256
)118) ≈ 0.37.

With this in mind, it should now be abundantly clear that allowing an attacker
access to any one of these four oracles will enable a practical attack against an
SSL/TLS implementation. Therefore, it is imperative that servers perform strict
padding checks and do not leak any information which may suffice as a padding or-
acle. Of course, the best way to ensure the security of an SSL/TLS implementation
is to follow appropriate standards – including PKCS #1 v2.2 [6], TLS 1.2 [10] and
TLS 1.3 [21].
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Searching for Trimmers

Up until this point, our discussion around trimmers has been fairly vague. This is
also the case in the literature, and although the idea of trimmers was introduced
in [8], they did not provide much of an indication as to the best way to search
for them. In this section, we will present our own research around finding trim-
mers for the most optimised algorithm, and we will also illustrate our most effective
methods to maximise the trimming of M0 for the four oracles presented in Table 7.4.

Recall from Section 4.2.1 that if we can find m0 and m0 ·ut−1 mod n that are PKCS
conforming then t divides m0. Furthermore, if m0 ·ut−1 mod n is PKCS conforming,
then m0 · ut−1 mod n = m0

u
t
. Hence we have:

2B ≤ m0
u

t
< 3B

As a result, it holds that m0
u
t

begins with 0x0002, and such a trimmer will allow
us to trim the interval containing m0.

The methodology behind our research includes varying the number of oracle calls
we allow for trimming, the way in which we search for the initial trimming values
u and t, then the way in which we seek the best numerators ul and uh to maximise
trimming efficiency. We will begin this section by looking at the TTT oracle, but
when we experiment with the other oracles, maximising the trimming of M0 is not
so straightforward. This is due to the fact that depending on the oracle, a valid
query has a chance of being returned as invalid. For example, suppose it holds that
t divides m0 and 2B ≤ m0

u
t
< 3B. However, further suppose that we are working

with a TFT oracle and the first 8 padding bytes of m0 · ut−1 mod n contains a 0x00

byte. This means that although the values of u and t are valid trimmers for m0, the
oracle will return m0 · ut−1 mod n as non-PKCS conforming, and so we will discard
u and t. One can see that similar situations will arise with an FTT and FFT oracle.
Based on this, we will look to find a balance between reducing the chances of such an
error, whilst minimising the number of oracle queries required to conduct the attack.

From Section 2.2 of [8], we know that our search for u and t can be restricted
to 2

3
< u

t
< 3

2
. Furthermore, they explained that assuming m0 is uniformly dis-

tributed in the original interval [2B, 3B− 1], the probability that m0
u
t

is also in the
interval is (1/t)(3−2(t/u)) if 2/3 < u/t < 1, and (1/t)(3(t/u)−2) if 1 < u/t < 3/2.
With this in mind, we know that trimmers are more likely to be successful when t is
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small and when u and t are close together. Therefore, we can use this information
as our starting point, and we will add to this in the following sections.

8.1 TTT Oracle

Working with a TTT oracle is simple because if t divides m0 and 2B ≤ m0
u
t
< 3B,

then m0 ·ut−1 mod n begins with 0x0002 and m0 ·ut−1 mod n will always be PKCS
conforming. As a result, there is no situation whereby a valid pair of trimmers u,
t will result in m0 · ut−1 mod n not being PKCS conforming. Therefore, we do not
need to worry about dealing with any false negatives, and in this section we simply
need to establish the most efficient way to find the lowest and highest possible trim-
mers.

If t > 4 and t divides m0, it must hold that either (t+1)
t

is a valid trimmer or
(t−1)

t
is a valid trimmer. The former is true if 2B ≤ m0 < 2.5B, and the latter is

true if 2.5B ≤ m0 < 3B. For values of t ≤ 4, the only possible valid trimmers are 4
3
,

3
4

and 5
4
. As a result, we should start our search with 4

3
and 3

4
, and if 3

4
is not valid

then try 5
4
. Thereafter, starting from t = 5, we should try (t−1)

t
, followed by (t+1)

t
if

and only if (t−1)
t

is not a valid trimmer. At this point we set t = t+1 and repeat. So
for each denominator t, we will either find one valid numerator u and add u

t
to our

list of trimmers, or we find no valid numerator. However, at this stage of our search,
we are most interested in finding as many possible values for t as possible, hence if
(t−1)

t
is a valid trimmer then we gain no information if we were to also discover that

(t+1)
t

is valid, hence we do not test it. Thus, this is the most efficient way to search
for trimmers with a TTT oracle, and we can continue to do this until we reach our
pre-determined trimming query limit – in [8], Bardou et al. recommended a limit
of 500 queries for a TTT oracle. At the end of this step, we will have a list of valid
trimmers u1

t1
, u2

t2
, . . . , un

tn
.

Once we have reached our limit and compiled a set of valid trimmers, it remains to
deduce the highest and lowest possible trimmers from that set. First, we calculate
the lowest common multiple of our set of trimmer denominators t1, t2, . . . , tn. This is
denoted t′. Then we must find the lowest and highest possible numerators, denoted
ul and uh respectively, such that both ul

t′ and uh

t′ are valid trimmers.

We know that ul must be greater than 2t′
3

and uh must be less than 3t′
2

. Fur-
thermore, we can produce an upper bound for ul by taking the lowest fraction ua

ta
from our list of trimmers and multiplying it by t′. We can use a similar method
to produce a lower bound for uh by taking the highest fraction ub

tb
from our list of

trimmers and multiplying it by t′. As a result we have:

2t′

3
< ul ≤

uat
′

ta
ubt
′

tb
≤ uh <

3t′

2

Once we have established the intervals that contain ul and uh, all that remains is to
conduct a binary search over the intervals to find the lowest possible valid numerator
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ul, and the highest possible valid numerator uh.

To find ul using this method, we try the value that represents the middle of the
interval containing ul, denoted um. If such a value um provides a valid trimmer um

t′ ,
then um becomes the new upper bound for ul. If um

t′ is not a valid trimmer then
instead um becomes the new lower bound for ul. We then continue to half the size
of the interval with each iteration until there is only one possible option for ul. By
searching in this way, it guarantees that we find the lowest possible valid trimmer
ul

t′ . We can follow a similar technique to find uh, but the slight difference is that if
the middle value um implies a valid trimmer um

t′ , then um becomes the new lower
bound for uh. Conversely, if um

t′ is not a valid trimmer, then um becomes the new
upper bound for uh. As before, this guarantees that we find the highest possible
valid trimmer uh

t′ . As explained in Section 4.2.1, we then have:

2B · t
′

ul
≤ m0 < 3B · t

′

uh

Since we do not have to worry about false negatives when we query the oracle, the
only variable we now need to consider is the trimming query limit. Although Bardou
et al. recommended a limit of 500 for a TTT oracle, in Table 8.1 we will vary this
limit and present the results of 1000 tests against a TTT oracle using the above
method to search for trimmers.

Trimming Limit Mean Median
100 12326 4222
200 10823 3588
300 10518 3428
350 10342 3425
375 10231 3386
400 10079 3360
425 10071 3371
450 10053 3386
475 10010 3369
500 10034 3394
525 9973 3405
550 9920 3399
600 9904 3432
700 9842 3498
800 9624 3555
900 9638 3612

Table 8.1: The mean and median number of oracle queries required for a TTT oracle
over 1000 tests as we vary the trimming limit.

From Table 8.1, we can see that as the trimming limit increases, the mean number
of oracle queries decreases. However, this is not the case with the median, and it
seems that a trimming limit between 375 and 500 ensures the median number of
oracle queries is below 3400; with the lowest appearing when the trimming limit is
400. As a result, we can conclude that 400 is the optimal trimming limit for a TTT
oracle – achieving a median of 3360 queries. We will now consider a TFT oracle.

68



CHAPTER 8. SEARCHING FOR TRIMMERS

8.2 TFT Oracle

When working with a TFT oracle, we can use the same intuition as Section 8.1,
except here we must consider the possibility of false negatives. That is, when t
divides m0 and m0 ·ut−1 mod n begins with 0x0002, but m0 ·ut−1 mod n is not PKCS
conforming. This will result in a valid trimmer being absent from our trimming set,
and it happens when there is a 0x00 byte in the first 8 padding bytes of m0 ·
ut−1 mod n. The probability of a valid trimmer being declared valid is:

P (TFT) =

(
255

256

)8

≈ 0.97

Hence, we can see that there is a 3% chance that the TFT oracle will provide a false
negative. Although this chance is small, we must still consider whether it has an
impact on the attack efficiency. There are 2 situations where such an error could
result in a false negative. The first is when we are searching for trimming pairs u and
t, and the second is when we are conducting our binary search to find the values ul
and uh. A false negative is either scenario could reduce the efficiency in trimmingM0.

In order to reduce the chances of a false negative when searching for trimming
pairs u and t, should we find that the oracle declares (t−1)

t
and (t+1)

t
as invalid,

then we could also try (t−2)
t

and (t+2)
t

. Suppose that both (t−1)
t

and (t−2)
t

are valid

trimmers. Although there is a 3% chance that (t−1)
t

will be declared invalid by the

oracle, the chances of both (t−1)
t

and (t−2)
t

being declared invalid is 0.09%. Hence,
we can almost eliminate the possibility of losing out on a valid denominator t. How-
ever, by reducing this chance of error, it does cost additional queries to the oracle.
Therefore, it is important to find a balance between the two. For the purposes of
notation, the number of trimming samples will be denoted (x, y), where x represents
the number of tested numerators below t, and y represents the number of tested nu-
merators above t. For example, a trimming sample size of (1, 2) means that for a
given denominator t, we will consider 1 numerator below t and 2 numerators above t.
Thus, the numerators to be considered in this example are (t−1), (t+1) and (t+2).

We can look to use a similar technique when conducting our binary search. Suppose
that during our search for ul, we find that um is declared an invalid numerator by
the oracle. It could be that it is simply invalid, or it may be part of the 3% of false
negatives. If it is declared invalid then we can try um + 1 (or um− 1 when searching
for uh). If um was falsely declared invalid then um + 1 will definitely be a valid nu-
merator. As a result, the chances of both um and um + 1 both being falsely declared
invalid is 0.09%. Hence, this method of sampling around the middle value for each
interval significantly reduces the inefficiencies brought about by false negatives, but
of course it also costs additional queries to the oracle. Again, we will look to try
and balance this.

Table 8.2 illustrates 72 sets of results as we vary the size of the trimming sam-
ples, binary search samples and the trimming limit. We conducted 1000 tests for
each permutations, and for clarity, note that a binary search sample of size 0 and
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a trimming sample of size (1, 1) implements the same version of the algorithm that
we discussed in Section 8.1.

0 Binary Samples
Trimming Samples (1,1) (2,1) (1,2) (2,2)
Trimming Limit
300 3976 4125 4130 4232
400 3866 4051 4045 4160
500 3900 3967 3966 4093
600 3934 4004 4005 4067
700 3940 4036 4036 4163
800 3998 4081 4120 4234
1 Binary Sample
Trimming Samples (1,1) (2,1) (1,2) (2,2)
Trimming Limit
300 3777 3877 3889 4042
400 3692 3867 3864 3930
500 3743 3792 3792 3924
600 3774 3849 3849 3892
700 3754 3890 3891 3980
800 3827 3901 3901 4025
2 Binary Samples
Trimming Samples (1,1) (2,1) (1,2) (2,2)
Trimming Limit
300 3773 3857 3874 4028
400 3699 3863 3863 3904
500 3745 3799 3799 3915
600 3784 3853 3853 3899
700 3767 3893 3892 3981
800 3835 3911 3911 4030

Table 8.2: The median number of queries for a TFT oracle over 1000 tests as we
vary the size of the trimming samples, binary search samples and trimming limit.

By observing the results in Table 8.2, we see that a trimming sample of size (1, 1)
allows for the most efficient trimming of M0. This means that for each denominator
t, we should only tests to see if (t−1)

t
and (t+1)

t
are valid trimmers. Furthermore, the

optimal size for our binary search sample is 1. Although a binary search sample
of size 2 would further reduce the chances of a false negative, this reduction in er-
ror is outweighed by the additional query costs. Finally, under the aforementioned
optimal conditions, it appears that 400 is the optimal trimming limit. With these
parameters, we were able to achieve a median of 3692 queries to the oracle.

8.3 FTT Oracle

As with a TFT oracle, again we must consider false negatives arising during our
implementation. With an FTT oracle, this will happen if t divides m0 and m0 ·
ut−1 mod n begins with 0x0002, but there is no 0x00 delimiter byte after the first
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8 padding bytes. The probability of a valid trimmer being declared valid is:

P (FTT) = 1−
(

255

256

)118

≈ 0.37

Hence, there is a 63% chance that the FTT oracle will respond with a false negative.
Again, we will look to balance trimming efficiency against the median number of
oracle queries required to conduct the attack, and we will invoke the same notation
and experimental techniques as Section 8.2. Furthermore, in Section 8.2 we found
that a binary search sample of size 1 provided the optimal results. With a TFT
oracle, recall that such a sample size means that the chances of both um and um + 1
being falsely declared invalid numerators is 0.09%. However, with an FTT oracle,
we have just shown that there is a 63% chance that the oracle will respond with a
false negative. Therefore, in order to get close to the low error rate of 0.09%, we
require a binary search sample of size 15; since (0.63)15 ≈ 0.00098 = 0.098%. As a
result, we used this as a starting point for our experimentation. Also, due to the
large number of possible permutations, we begin by following the advice of Bardou
et al. in [8] by setting the trimming limit to 2000. Our initial set of results can be
found in Table 8.3.

Binary
Samples

Trimming Samples
(1,1) (1,2) (2,2) (2,3)

12 12095 11901 11916 12053
13 12060 11877 11901 11998
14 12053 11828 11902 11997
15 12053 11837 11877 12013
16 12060 11877 11877 12011

Table 8.3: The median number of queries for an FTT oracle over 1000 tests with a
trimming limit of 2000, and varying sizes of trimming and binary search samples.

Table 8.3 illustrates 20 sets of results as we vary the size of the trimming and binary
search samples, with a trimming limit of 2000. The results show that with such a
trimming limit, a trimming sample of size (1, 2) allows for the most efficient trim-
ming of M0. This means that for each denominator t, we should only test to see
if (t−1)

t
, (t+1)

t
and (t+2)

t
are valid trimmers. Furthermore, the optimal size for our

binary search sample is 14. This value ensures that the chance of a false negative is
reduced to 0.155%.

Although Table 8.3 provides an optimal median of 11828 queries for an FTT or-
acle, these figures only hold true when we set the trimming limit to 2000. As a
result, we will now utilise the strongest parameters to conduct additional experi-
ments with alternative trimming limits – both above and below 2000.

As we can see from Table 8.4, 2000 is perhaps not the the optimal trimming limit.
Instead the results show that the higher trimming limit of 2600 actually leads to a
reduced median of 11575 oracle queries.
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Trimming Limit Median
1300 12353
1500 11954
1700 11850
1900 11832
2000 11828
2100 11790
2300 11597
2400 11595
2500 11579
2600 11575
2700 11615
2800 11713

Table 8.4: The median number of oracle queries for an FTT oracle over 1000 tests as
we vary the trimming limit – utilising a trimming sample of size (1, 2) and a binary
sample of size 14.

Finally, we took the optimal trimming limit and binary search sample size, then
tested it with a trimming sample of size (2, 1). Based on our research with a TFT
oracle, the results are likely to be similar to when the trimming sample size is (1, 2).
We found that this slight alteration provided a median of 11795 oracle queries. As
a result, we can confirm that a trimming limit of 2600, a trimming sample of size
(1, 2), and a binary sample of size 14 are the optimal parameters for an FTT oracle
– achieving a median of 11575 oracle queries.

8.4 FFT Oracle

Finally, we consider an FFT oracle. Such an oracle will return a false negative if t
divides m0 and m0 · ut−1 mod n begins with 0x0002, but there is no 0x00 delimiter
byte after the first 8 padding bytes, or there is a 0x00 byte in the first 8 padding
bytes. Here the probability of a valid trimmer being declared valid is:

P (FFT) =

(
1−

(
255

256

)118
)
·
(

255

256

)8

≈ 0.36

Hence, there is a 64% chance that an FFT oracle will respond with a false negative
– very similar to that of an FTT oracle. By using the same intuition as we did in
Section 8.3, we require a binary search sample of size 16 to get close to the low error
rate of 0.09%. This is because (0.64)16 ≈ 0.00079 = 0.079%. Once again, we will
use this as a starting point for our experimentation, and we will follow the advice
of Bardou et al. in [8] by setting the trimming limit to 1500.

Table 8.5 presents 15 sets of results as we vary the size of the trimming and binary
search samples, with a trimming limit of 1500. These results show that with a
trimming limit of 1500, a trimming sample size of (1, 2) allows for the most efficient

trimming of M0. So for each denominator t, we should only test the validity of (t−1)
t

,
(t+1)

t
and (t+2)

t
. We can also see that the optimal size for our binary search is 16,
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Binary
Samples

Trimming Samples
(1,1) (1,2) (2,2)

14 16190 15430 15785
15 16105 15395 15715
16 16052 15324 15669
17 16052 15324 15669
18 16052 15324 15669

Table 8.5: The median number of queries for an FFT oracle over 1000 tests with a
trimming limit of 1500, and varying sizes of trimming and binary search samples.

since an increase to 17 or 18 does not improve the median. This means that the
chances of a false negative is approximately 0.079%. As we did with the FTT oracle,
we will now take these optimal parameters to conduct additional experiments as we
vary the trimming limit both above and below 1500.

Trimming Limit Median
1300 15655
1500 15324
1900 15172
2000 14768
2100 14868
2200 14787
2300 14752
2400 14740
2500 14840
2600 14807
2700 14907
2800 14869
2900 14942
3000 14940

Table 8.6: The median number of oracle queries for an FFT oracle over 1000 tests as
we vary the trimming limit – utilising a trimming sample of size (1, 2) and a binary
sample of size 16.

Table 8.6 illustrates that in our experiments, a trimming of limit of 2400 actually
provides a lower median than a trimming limit of 1500 – reducing the median number
of oracle queries from 15324 to 14740. Again, we took the optimal trimming limit
and binary search sample size, and tested it with a trimming sample of size (2, 1).
As with an FTT oracle, we found that this slightly increased the median number
of oracle queries over 1000 tests to 14828. Therefore, when working with an FFT
oracle, it appears that a trimming limit of 2400, a trimming sample of size (1, 2),
and a binary search sample of size 16 are the optimal parameters – achieving the
aforementioned median of 14740 oracle queries.
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8.5 Summary

Having conducted extensive research into optimising the search for trimmers, we
have demonstrated that the most efficient way to do so varies, depending on the
strength of the oracle. When working with a TTT oracle, the search is intuitive.
However, with other oracles that may reject valid trimming pairs u and t, false neg-
atives must be considered. Our research illustrates that the optimal binary search
error rates for TFT, FTT and FFT oracles are 0.098%, 0.155% and 0.079% re-
spectively. That being said, we were only able to conduct 1000 tests for each of our
experiments. Therefore, with larger sample sizes, it is possible that we could discover
alternative optimal error rates. Nonetheless, for a TTT, TFT, FTT and FFT ora-
cle, we achieved a median of 3360, 3692, 11575 and 14740 oracle queries respectively.

When compared to the statistics presented in Section 2.5 of [8], unfortunately we
have not been able to reach their level of optimisation for an FTT or FFT oracle;
where they achieved a median of 11276 and 14501 respectively. However, we have
been able to improve upon their median number of oracle queries for a TTT (3768)
and TFT (4014) oracle.

In an attempt to demonstrate that these improvements are not the result of statisti-
cal flukes, we conducted some additional experimentation; this time utilising 10000
test simulations. For a TTT oracle, this larger test size produced a median of 3420
oracle queries. Then, for a TFT oracle, this larger test size produced a median of
3713 oracle queries. Hence, it is likely that our trimming search techniques for both
a TTT and TFT oracle are more efficient than those established by Bardou et al.
in 2012. However, more work is required on our part to improve upon the statistics
for an FTT and FFT oracle.
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Conclusion

In this project, we have provided a comprehensive overview with significant depth
to allow for a strong technical understanding of Bleichenbacher-style attacks. As
a result, we have been able to bridge the gaps between the available literature,
and this project should suffice as a single point-of-reference to both a technical and
non-technical reader. We demonstrated examples of precisely how the algorithm
works, and were able to quantitatively investigate the different optimisations; along
with their individual contributions to the attack. We also provided details on how
Bleichenbacher-style attacks still exist within modern SSL/TLS implementations,
and throughout our attack simulations, we were able to provide analysis on the
efficiency of the attack under different parameters. In Section 3.2.2, we uncovered
and corrected an error that appears in the original attack publication [1] and all
subsequent publications. We then went on to present the results of a significant
number of attack simulations, of which provides a more thorough overview for the
attack optimisations than any other available literature.

In addition to this, our research on searching for trimmers provides optimal pa-
rameters with justification – something which is absent from the literature since the
introduction of trimmers in 2012. We were able to delve deeper into the findings of
Bardou et al. in [8], and in doing so, for a TTT and TFT oracle, we were able to
improve upon their optimal results – reducing the medians from 3768 and 4014 to
3360 and 3692 respectively. Unfortunately, we were not able to do the same with
an FTT or FFT oracle, so this is an area that warrants further research and exper-
imentation. Our findings may be due to statistical flukes, or it may be that some of
the methods presented in this project are simply more or less efficient. However, all
of the results are consistent with Bardou et al., and so we hope that our findings in
Chapter 8 complement those in [8], and perhaps provide the reader with a greater
level of understanding and appreciation for their optimisation.

In Section 6.3, we mentioned that RSA encryption has been deprecated in TLS
1.3. However, although its deprecation significantly hinders Bleichenbacher-style
attacks, the protocol is not completely immune. Therefore, great care must still be
taken when implementing the protocol. For versions of SSL/TLS 1.2 and earlier,
although RSA encryption is permitted, perhaps a more sensible approach would be
to utilise (Elliptic Curve) Diffie-Hellman key agreements for encryption. Not only
does this make the protocol immune to all known Bleichenbacher-style attacks, but
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it also has the added benefit of providing forward secrecy. Based on this, in many
ways it seems that the deprecation of RSA encryption is a good decision to help
provide assurance of SSL/TLS security.

We have also looked at an alternative padding scheme known as RSA-OAEP. How-
ever, despite the weaknesses that we can attribute to the PKCS #1 v1.5 padding
scheme, the chosen ciphertext attack by James Manger [7] is comparatively more
damaging to RSA-OAEP. With a 1024 bit RSA key, such an attack requires around
1000 oracle queries to decrypt a chosen ciphertext. As a result, one can see that
switching to a different padding scheme does not eliminate the security threats.
Therefore, instead of trying to avoid the vulnerabilities of PKCS #1 v1.5 padding,
perhaps we should look to ensure that all appropriate countermeasures have been
taken to thwart Bleichenbacher’s attack. By following Section 7.4.7.1 of TLS 1.2 [10]
and Appendix E.7 of TLS 1.3 [21], such a task is perfectly achievable. In general,
it is imperative that we do not allow for any of the four oracles discussed in this
project, or the weaker FFF and BVO oracles that we discussed in Section 2.2.3 and
Section 4.1.1 respectively. In doing so, we will ensure that incorrectly formatted
messages (including incorrect SSL/TLS version numbers) will be treated in a way
that is indistinguishable to those that are correctly formatted. This must include
error messages, timing differences, connection time-outs and any other means of
information leakage that we have discussed throughout this project.

Finally, the common practice of sharing static RSA keys across multiple servers
and SSL/TLS protocol versions also leaves websites vulnerable to Bleichenbacher-
style attacks. Coupled with the fact that many implementations favoured weak
encryption over no encryption was precisely what lead to the pervasiveness of the
DROWN attack discussed in Section 5.2. Therefore, all things considered, it is clear
that the SSL/TLS standards should be carefully followed, padding schemes must
be properly implemented, patches for SSL/TLS implementations should be applied
quickly, export/weak ciphersuites and SSLv2 should be avoided, and good public
key management is paramount.

Looking into the future, the use of RSA encryption is becoming less common –
and this will continue to be the case as more servers look to implement TLS 1.3.
However, these servers will still need to support earlier versions of the protocol for
backwards compatibility. Therefore, the option to naively enable RSA encryption
may remain for many years to come. Furthermore, it is likely that alternative means
of confirming side-channel leakage will be or may have already been discovered. This
may lead to alternative oracles, and ultimately another way of enabling this 20-year-
old attack. That being said, using RSA solely for the purpose of producing digital
signatures is secure – provided the key is not utilised elsewhere for encryption pur-
poses. As a result, the ground-breaking findings of Rivest, Shamir and Adleman in
1978 [4] are likely to be practically implemented for many years to come.
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Appendix

A An Example Implementation of the Original

Algorithm

from __future__ import division

import gmpy2

from gmpy2 import *

import math

import random

from random import randint

import time

import numpy as np

# This is for an FFT oracle

p = 127745661826385086510660485218195864933818006588560666162640700

9513668695927002000016452296503931908438647819019041956033130070027

7241768836582806004529129

q = 124072725169301350690183123779139662182194954855798577800397454

0416736011766630547081864064037254640342997590972436892150829078202

0989305312628056890880939

n = p * q

e = 65537

def eea(a, b):

if b == 0:

return (1, 0)

(q, r) = (a // b, a % b)

(s, t) = eea(b, r)

return (t, s - (q * t))

def find_inverse(x, y):

inv = eea(x, y)[0]

if inv < 1:

inv += y

return inv

d = find_inverse(e, phi)

def zeroinpaddingcheck(x):

for j in range(3, 18):

if j % 2 == 1:

if hex(x)[j:(j + 2)] == "00":

return 1

break

else:
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continue

else:

continue

def zeroinpadding(x):

for j in range(0, (len(x) - 1)):

if j % 2 == 0:

if x[j:(j + 2)] == "00":

return 1

break

else:

continue

else:

continue

def delimiterchecker(x):

a = len(hex(x))

b = a - 2

for j in range(19, (b + 1)):

if j % 2 == 1:

if hex(x)[j:(j + 2)] == "00":

return 1

break

else:

continue

else:

continue

def oracle(query):

global counter

counter += 1

v = powmod(query , d, n)

if bottom <= v and v <= top and delimiterchecker(v) == 1 and

zeroinpaddingcheck(v) != 1:

return (1)

# The padding is correct

else:

return (0)

# we get an error message

def range(start , stop):

while start < stop:

yield start

start += 1

def range_overlap_adjust(list_ranges):

# https :// stackoverflow.com/questions /15273693/ python -union -of-

multiple -ranges

overlap_corrected = []

for start , stop in sorted(list_ranges):

if overlap_corrected and start - 1 <= overlap_corrected

[ -1][1] and stop >= overlap_corrected [ -1][1]:

overlap_corrected [-1] = min(overlap_corrected [-1][0],

start), stop

elif overlap_corrected and start <= overlap_corrected

[ -1][1] and stop <= overlap_corrected [ -1][1]:

break

else:
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overlap_corrected.append ((start , stop))

return overlap_corrected

def ceildiv(a, b):

# http :// stackoverflow.com/a/17511341

return -(-a // b)

def floordiv(a, b):

# http :// stackoverflow.com/a/17511341

return a // b

def PMS():

global message

a = pow(16, 95)

b = (pow(16, 96)) - 1

f = random.randint(a, b)

message = hex(f)[2: -1]

def pad():

global padding

global encoding

global decimal_of_encoding

global ciphertext

r = (k - 3 - ((len(message)) / 2)) * 2

a = pow(16, (r - 1))

b = pow(16, r) - 1

f = random.randint(a, b)

padding = hex(f)[2: -1]

while zeroinpadding(padding) == 1:

g = random.randint(a, b)

padding = hex(g)[2: -1]

encoding = "0002" + padding + "00" + message

decimal_of_encoding = int(encoding , 16)

ciphertext = powmod(decimal_of_encoding , e, n)

def step_1(input):

global i

global c_0

i = 0

for s in range(1, int(n)):

w = int(powmod(s, e, n))

binding = int((w * ciphertext) % n)

if oracle(binding) == 1:

list_s.append(s)

break

else:

continue

c_0 = binding

M = [(2 * B, (3 * B) - 1)]

list_M.append(M)

i = i + 1

def step_2a ():

global i

global c_0

global s

for s in range(( ceildiv(n, (3 * B))), n):

x = int(powmod(s, e, n))
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attempt2a = int((x * c_0) % n)

if oracle(attempt2a) == 1:

list_s.append(int(s))

break

else:

continue

def step_2bc ():

global i

global c_0

global s

i = i + 1

# This is step 2b

if i > 1 and len(list_M[i - 1]) > 1:

for s in range(list_s[i - 1] + 1, n):

y = int(powmod(s, e, n))

attempt2b = int((y * c_0) % n)

if oracle(attempt2b) == 1:

list_s.append(int(s))

break

else:

continue

# This is step 2c

elif i > 1 and len(list_M[i - 1]) == 1:)

found = False

r = ceildiv (2 * ((( list_M[i - 1][0][1] * list_s[i - 1]) -

(2 * B))), n)

while not found:

for s in range(ceildiv (((2 * B) + (r * n)), list_M[i -

1][0][1]) , (ceildiv (((3 * B) + (r * n)), list_M[i -

1][0][0]))):

z = int(powmod(s, e, n))

attempt2c = int((z * c_0) % n)

if oracle(attempt2c) == 1:

found = True

list_s.append(int(s))

break

r = r + 1

else:

print(" error ")

def step_3 ():

global i

global c_0

list_temp = []

for j in range(0, len(list_M[i - 1])):

for r in range(( ceildiv ((( list_M[i - 1][j][0] * list_s[i])

- (3 * B + 1)), n)), (floordiv (( list_M[i - 1][j][1] *

list_s[i] - 2 * B), n)) + 1):

z = ceildiv ((2 * B + r * n), list_s[i])

list_temp.append (((int(max(list_M[i - 1][j][0], min(

ceildiv ((2 * B + r * n), list_s[i]), list_M[i - 1][j

][1])))), int(min(list_M[i - 1][j][1], max(floordiv

(((3 * B - 1) + r * n), list_s[i]), list_M[i - 1][j

][0])))))

list_M.append(range_overlap_adjust(list_temp))
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def step_4 ():

global i

global c_0

inverse = find_inverse(list_s [0], n)

message = list_M[i][0][0] * inverse % n

print("The decrypted ciphertext is {}". format(message))

if message != decimal_of_encoding:

print "Error - Decryption failed !"

def main(ciphertext):

global counter

global bottom

global top

global list_s

global B

global list_M

B = int(pow(2, 8 * (k - 2)))

bottom = 2 * B

top = ((3 * B) - 1)

counter = 0

list_s = [] # this is where we store our s values

list_M = [] # this is where we store the possible intervals

t0 = time.time()

step_1(ciphertext)

step_2a ()

step_3 ()

while len(list_M[i]) != 1 or list_M[i][0][0] != list_M[i

][0][1]:

step_2bc ()

step_3 ()

else:

step_4 ()

t1 = time.time()

duration = t1 - t0

print("It took {} seconds , and required {} calls to the Oracle

". format(duration , counter))

def test(x):

Oracle_times = []

u = 1

for u in range(1, (x + 1)):

global t

t = int ("9110991000")

random.seed(t)

print ("Seed {}: {}". format(u, t))

PMS()

pad()

main(ciphertext)

Oracle_times.append(counter)

u = (u + 1)

test (1)

B Details for the Example in Section 3.3

n = 158497523913555876747567486455334446943697697850525957180228510

5093981007528814361057804920494278022207070021371522294341119917990

9183507532643670621230424873666440573674404116678983498923959249396
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9405768724150251164627945119046892818168941869397486829442751859684

594475821381902742945342241559212972696372131

e = 65537

c = 526782076432733192013113050697510338947448548695162256597979552

1086714322826960816935621883549722353916264922074541287271688127086

4214475071393005502792636390096355710643863390409434189059604084144

2892225793582986403831598196739465622246016952992874375914276707086

60091993321098539660831004250023328290009033

M_0 = {[54861240687936886832559362511872092700743926359323320701120

0198845619738175967294716517569953636279361328472533787211174495818

3862744647903224103718245670299614498700710006264535590197791934024

6415125412623597951915939539289081689902927585003914562122604525965

75509589842140073806143686060649302051520512 ,

8229186103190533024883904376780813905111588953898498105168002982684

2960726395094207477635493045441904199270880068081676174372757941169

7185483615557736850544942174805106500939680338529668790103696226881

1893539692787390930893362253485439137750587184318390678894863264384

763210110709215529090973953077280767]}

M_1 = {[57984032420551969261799367758338458391605776226353735000640

8930589821057808701991330148943752189431162629863662193800590753881

2943837180301532996070247314089144476942978267587423133230387373567

6596897606086667046312916947663077810697335176924174483500340286083

97663056363075274047956126704600186430341329 ,

5798436691991595887759616404736054163099789099939415523916720925933

5038906739460743462255217588282568905728472476641071947270634052960

1052315303889753661502000417826910899565282319746787409871816285811

3224612454035566992577135955621096180290786452626945267316114244822

777256373615505703826032176243779847] ,

[773118202278266326052012928184365556958796251197780331751703132784

0751895724742443705495193871236451992215375078766607018592916950810

3535876306328754702181649528350398838714062974681488586813232108074

4573425843990553872781452492505873624852431059494877121233938582956

4207979632352241784191845588698162759 ,

7731215472719062222099808910745863893527173989281845341369662947876

0452083116686047502312781081703972564895857044927083057811674122691

8380925067570275951909581253636601459947169753238634540647371397579

8350204189309814025625353099610098911122679599225682451047102411330

622160731919791361313277578511601277]}

M_2 = {[57984170496221909925877810386226547764811134524722693215300

9488822084014392766709267201601182566241612373298813765634686709095

6114877174185218503408921526826284256661938121027306894846082640809

6660116800176592035056475284451191596894484229313007919500408554770

59291527800028160539106673663015808082563731 ,

5798424768925174231256988745842067676978466878229669655751850436962

7720031279813730215115319954375628980401003798131690965369756254228

9200316175279347893379245333964538083078471051061695453619188531687

6165329060013431651177226187541021923910274398878762334043958774821

092561236483839917897147779920692864]}

M_3 = {[57984170496221909925877810386226547764811134524722693215300

9488822084014392766709267201601182566241612373298813765634686709095

6114877174185218503408921526826284256661938121027306894846082640809

6660116800176592035056475284451191596894484229313007919500408554770
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59291527800028160539106673663015808082563731 ,

5798419869534345836360918615511540538007377712079785868292406346340

0982788422354931242454850126535961608586824915985901406139479515570

2474620258395785620196904108992388546591587829270418786922023470235

4043196713561119202981415852371286146489993475132915975292964908891

785979448079242750002250910679459915]}

M_989 = {[579841920589406700723097951151738986844836670449757912367

0544442356595372437632279001236371036415951917099030545422083872714

0974020391296912304411757072942796784828332557788936612224343708476

4362681915869339573392245686648058962247658928156442361659628221880

7832910299460172654764392298172087597665573158 ,

5798419205894067007230979511517389868448366704497579123670544442356

5953724376322790012363710364159519170990305454220838727140974020391

2969123044117570729427967848283325577889366122243437084764362681915

8693395733922456866480589622476589281564423616596282218807832910299

460172654764392298172087597665573158]}

C Details for the Example in Section 4.2.3

M_0 = {[54861240687936886832559362511872092700743926359323320701120

0198845619738175967294716517569953636279361328472533787211174495818

3862744647903224103718245670299614498700710006264535590197791934024

6415125412623597951915939539289081689902927585003914562122604525965

75509589842140073806143686060649302051520512 ,

6776976790862792189472450998525349108720790546598419347674439444416

7004971121388527613550043221570528639124807706143505468576456954100

9986454653592262977056358224240419040243064036730187453702663921124

1855081169142545280712721234449349817129744591372391253662504029870

620843711886340644011054725825822720]}

D Details for the Example in Section 5.3.3

n = 158497523913555876747567486455334446943697697850525957180228510

5093981007528814361057804920494278022207070021371522294341119917990

9183507532643670621230424873666440573674404116678983498923959249396

9405768724150251164627945119046892818168941869397486829442751859684

594475821381902742945342241559212972696372131

c = 548612406879368868325593625118720927007439263593233207011200198

8456197381759672947165175699536362793613284725337872111744958183862

7446479032241037182456702996144987007100062645354210919080699357093

0340327224249953158106165219370690485466210035953872227235794454105

7399051537649649290881372717337585528208

m_0 = 5597129977025317612354888484447924765606106586029310301175614

1036893210069061372634468967985925254496506263389642157474255328423

6297518647663758503579880203468959184454931803417537189283719711583

4916469233567782759634215567198648742415568767145726402625410393811

528990759818194305695537320357475953232000

m = 123012498414353716588779615431871631339979562484880180664267029

7644937113856832692235778008003489223011950907862854821415628785802

8033371587969298509912400451509336474637686009989579679295640378877

1734808190428651287559532059768063983815180220779142393629847860373

943806259389937543771569445743812385065245483
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E The Seeds for our Attack Simulations

The structure of a seed is

x || y || z || 99 || n

where x represents the version of the algorithm, y represents the oracle type, z rep-
resents the test batch number and n represents the specific test number.

The version of the algorithm (x)
The original algorithm is specified by a 7, the Kĺıma et al. optimisation is specified
by an 8, then the most efficient algorithm with both the Kĺıma et al. and Bardou
et al. optimisations is specified by a 9. Testing with just the Bardou et al. optimi-
sation came later, and as such, this is specified by a 6.

The oracle type (y)
A TTT oracle is denoted 000, a TFT oracle is denoted 010, an FTT oracle is denoted
100, and an FFT oracle is denoted 110.

The test batch number (z) and test number (n)
We decided to test in batches of 1000 to ensure that equal attention would have be
paid to all variations of algorithm and oracle had we ran out of time. As a result,
the first 1000 tests had a batch number of 0 and the test numbers ran from 1 to
1000. Then, the second 1000 tests had a batch number of 1 and again the test
numbers ran from 1 to 1000. This continued until we had obtained results for 10000
tests under each permutation of oracle and algorithm. Of course we could have also
simply ran the test numbers from 1 to 10000 for each permutation, but under the
time constraints this could have provided incomplete results.

F An Optimised Implementation of the Algorithm

from __future__ import division

import gmpy2

from gmpy2 import *

import math

import random

from random import randint

import time

import numpy as np

# This is for a TTT oracle

def eea(a, b):

if b == 0:

return (1, 0)

(q, r) = (a // b, a % b)

(s, t) = eea(b, r)

return (t, s - (q * t))

def find_inverse(x, y):

inv = eea(x, y)[0]

if inv < 1:
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inv += y

return inv

def zeroinpaddingcheck(x):

for j in range(3, 18):

if j % 2 == 1:

if hex(x)[j:(j + 2)] == "00":

return 1

break

else:

continue

else:

continue

def zeroinpadding(x):

for j in range(0, (len(x) - 1)):

if j % 2 == 0:

if x[j:(j + 2)] == "00":

return 1

break

else:

continue

else:

continue

def delimiterchecker(x):

a = len(hex(x))

b = a - 2

for j in range(19, (b + 1)):

if j % 2 == 1:

if hex(x)[j:(j + 2)] == "00":

return 1

break

else:

continue

else:

continue

def oracle(query):

global counter

counter += 1

v = powmod(query , d, n)

if bottom <= v and v <= top:

return (1)

# The padding is correct

else:

return (0)

# we get an error message

def trimmer_oracle(query):

global counter2

counter2 += 1

v = powmod(query , d, n)

if bottom <= v and v <= top:

return (1)

else:

return (0)
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def test1(u, t):

if gcd(u, t) == 1:

return 1

else:

return 0

def test2(u, t):

tinv = find_inverse(t, n)

a = powmod(u, e, n)

b = powmod(tinv , e, n)

g = (c_0 * a * b) % n

if trimmer_oracle(g) == 1:

return 1

else:

return 0

def lcm(a):

# https :// stackoverflow.com/questions /37237954/ calculate -the -

lcm -of -a-list -of -given -numbers -in -python /37238140

lcm = a[0]

for i in a[1:]:

lcm = int((lcm * i) / (gcd(lcm , i)))

return lcm

def trimming ():

global trimmers

global mintrim

global maxtrim

trimmers = [1]

trimmersfrac = [1]

trimmer_limit = 500

for t in range(3, 4097):

if counter2 < trimmer_limit:

for u in range((t - 1), (t + 1) + 1):

if counter2 < trimmer_limit and (u/t) > (2/3) and (

u/t) < (3/2):

if test1(u, t) == 1:

if test2(u, t) == 1:

trimmers.append(u / t)

trimmersfrac.append(t)

break

else:

continue

else:

continue

else:

break

else:

break

print ("It conducted {} trimmer queries to the oracle and found

{} trimmers ". format(counter2 , (len(trimmers) - 1)))

mintrim1 = min(min(trimmers), 1)

maxtrim1 = max(max(trimmers), 1)

newtrimmers = []

newtrimmers.append(mintrim1)

newtrimmers.append(maxtrim1)

denom = lcm(trimmersfrac)
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lowerbottom = floordiv ((2 * denom), 3)

lowertop = denom

while (lowertop - lowerbottom) != 1:

u = ceildiv (( lowerbottom + lowertop), 2)

if test2(u, denom) == 1:

lowertop = u

else:

lowerbottom = u

ulower = lowertop

mintrim = (ulower / denom)

upperbottom = denom

uppertop = ceildiv ((3 * denom), 2)

while (upperbottom + 1) != uppertop:

u = floordiv (( upperbottom + uppertop), 2)

if test2(u, denom) == 1:

upperbottom = u

else:

uppertop = u

uupper = upperbottom

maxtrim = (uupper / denom)

def range(start , stop):

while start < stop:

yield start

start += 1

def range_overlap_adjust(list_ranges):

# https :// stackoverflow.com/questions /15273693/ python -union -of-

multiple -ranges

overlap_corrected = []

for start , stop in sorted(list_ranges):

if overlap_corrected and start - 1 <= overlap_corrected

[ -1][1] and stop >= overlap_corrected [ -1][1]:

overlap_corrected [-1] = min(overlap_corrected [-1][0],

start), stop

elif overlap_corrected and start <= overlap_corrected

[ -1][1] and stop <= overlap_corrected [ -1][1]:

break

else:

overlap_corrected.append ((start , stop))

return overlap_corrected

def ceildiv(a, b):

# http :// stackoverflow.com/a/17511341

return -(-a // b)

def floordiv(a, b):

# http :// stackoverflow.com/a/17511341

return a // b

def primes ():

global p

global q

global e

global d

global k

global n

x = random.randint(int(pow(2, 511.5)), int(2 ** (512)))

89



APPENDIX

y = random.randint(int(pow(2, 511.5)), int(2 ** (512)))

p = next_prime(x)

q = next_prime(y)

n = p * q

phi = (p - 1) * (q - 1)

byte_length_n = (len(hex(n)) - 2) / 2

k = int(byte_length_n)

e = 65537

d = find_inverse(e, phi)

def PMS():

global message

a = pow(16, 95)

b = (pow(16, 96)) - 1

f = random.randint(a, b)

message = hex(f)[2: -1]

def pad():

global padding

global encoding

global decimal_of_encoding

global ciphertext

r = (k - 3 - ((len(message)) / 2)) * 2

a = pow(16, (r - 1))

b = pow(16, r) - 1

f = random.randint(a, b)

padding = hex(f)[2: -1]

while zeroinpadding(padding) == 1:

g = random.randint(a, b)

padding = hex(g)[2: -1]

encoding = "0002" + padding + "00" + message

decimal_of_encoding = int(encoding , 16)

ciphertext = powmod(decimal_of_encoding , e, n)

def step_1(input):

global i

global c_0

i = 0

global a

global b

for s in range(1, int(n)):

w = int(powmod(s, e, n))

binding = int((w * ciphertext) % n)

if oracle(binding) == 1:

list_s.append(s)

break

else:

continue

c_0 = binding

M = [(2 * B, (3 * B) - 1)]

trimming ()

a = int(ceil ((2 * B) * (1 / mintrim)))

b = int(floor (((3 * B) - 1) * (1 / maxtrim)))

M = [(a, b)]

list_M.append(M)

i = i + 1

def step_2a ():
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global i

global c_0

global s

s = ceildiv ((n + (2 * B)), b)

found = False

while not found:

r = floordiv (((s * a) - (3 * B)), n)

if s >= ceildiv (((2 * B) + ((r + 1) * n)), b):

x = int(powmod(s, e, n))

attempt2a = int((x * c_0) % n)

if oracle(attempt2a) == 1:

list_s.append(int(s))

found = True

break

else:

s = s + 1

continue

else:

s = ceildiv (((2 * B) + ((r + 1) * n)), b)

def step_2b ():

global i

global c_0

global s

if i > 1 and len(list_M[i - 1]) > 1:

iteration = 0

found = False

r_values = []

s_ranges = []

for j in range(0, len(list_M[i - 1])):

r_values.append(ceildiv (2 * ((( list_M[i - 1][j][1] *

list_s[i - 1]) - (2 * B))), n))

for w in range(0, len(list_M[i - 1])):

s_ranges.append (( ceildiv (((2 * B) + (r_values[w] * n)),

list_M[i - 1][( iteration % len(list_M[i - 1]))][1])

, (ceildiv (((3 * B) + (r_values[w] * n)), list_M[i -

1][( iteration % len(list_M[i - 1]))][0]))))

while not found:

if s_ranges [( iteration % len(list_M[i - 1]))][0] >

s_ranges [( iteration % len(list_M[i - 1]))][1]:

h = (r_values [( iteration % len(list_M[i - 1]))]) +

1

r_values [( iteration % len(list_M[i - 1]))] = h

y = (ceildiv (((2 * B) + (h * n)), list_M[i - 1][(

iteration % len(list_M[i - 1]))][1]) , (ceildiv

(((3 * B) + (h * n)), list_M[i - 1][( iteration %

len(list_M[i - 1]))][0])))

s_ranges [( iteration % len(list_M[i - 1]))] = y

s = s_ranges [( iteration % len(list_M[i - 1]))][0]

z = int(powmod(s, e, n))

attempt2bnew = int((z * c_0) % n)

if oracle(attempt2bnew) == 1:

found = True

list_s.append(int(s))

break

else:

t = s + 1
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s_ranges [( iteration % len(list_M[i - 1]))] = (t

, (( ceildiv (((3 * B) + (r_values [( iteration

% len(list_M[i - 1]))] * n)), list_M[i -

1][( iteration % len(list_M[i - 1]))][0]))))

iteration = iteration + 1

else:

s = s_ranges [( iteration % len(list_M[i - 1]))][0]

z = int(powmod(s, e, n))

attempt2bnew = int((z * c_0) % n)

if oracle(attempt2bnew) == 1:

found = True

list_s.append(int(s))

break

else:

t = s + 1

s_ranges [( iteration % len(list_M[i - 1]))] = (t

, (( ceildiv (((3 * B) + (r_values [( iteration

% len(list_M[i - 1]))] * n)), list_M[i -

1][( iteration % len(list_M[i - 1]))][0]))))

iteration = iteration + 1

def step_2c ():

global i

global c_0

global s

if i > 1 and len(list_M[i - 1]) == 1:

found = False

r = ceildiv (2 * ((( list_M[i - 1][0][1] * list_s[i - 1]) -

(2 * B))), n)

while not found:

for s in range(ceildiv (((2 * B) + (r * n)), list_M[i -

1][0][1]) , (ceildiv (((3 * B) + (r * n)), list_M[i -

1][0][0]))):

z = int(powmod(s, e, n))

attempt2c = int((z * c_0) % n)

if oracle(attempt2c) == 1:

found = True

list_s.append(int(s))

break

r = r + 1

else:

print ("error ")

def step_3 ():

global i

global c_0

list_temp = []

for j in range(0, len(list_M[i - 1])):

for r in range(( ceildiv ((( list_M[i - 1][j][0] * list_s[i])

- (3 * B + 1)), n)), (floordiv (( list_M[i - 1][j][1] *

list_s[i] - 2 * B), n)) + 1):

z = ceildiv ((2 * B + r * n), list_s[i])

list_temp.append (((int(max(list_M[i - 1][j][0], min(

ceildiv ((2 * B + r * n), list_s[i]), list_M[i - 1][j

][1])))), int(min(list_M[i - 1][j][1], max(floordiv

(((3 * B - 1) + r * n), list_s[i]), list_M[i - 1][j

][0])))))

list_M.append(range_overlap_adjust(list_temp))
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def step_4 ():

global i

global c_0

inverse = find_inverse(list_s [0], n)

message = list_M[i][0][0] * inverse % n

if message != decimal_of_encoding:

print "Error - Decryption failed !"

def main(ciphertext):

global counter

global counter2

global bottom

global top

global list_s

global B

global list_M

global i

B = int(pow(2, 8 * (k - 2)))

bottom = 2 * B

top = ((3 * B) - 1)

counter = 0

counter2 = 0

list_s = [] # this is where we store our s values

list_M = [] # this is where we store the possible intervals

step_1(ciphertext)

t0 = time.time()

step_2a ()

step_3 ()

while len(list_M[i]) != 1 or list_M[i][0][0] != list_M[i

][0][1]:

i = i + 1

if i > 1 and len(list_M[i - 1]) > 1:

step_2b ()

if t not in list2b:

list2b.append(t)

elif i > 1 and len(list_M[i - 1]) == 1:

step_2c ()

else:

print ("Error ")

break

step_3 ()

else:

step_4 ()

t1 = time.time()

duration = t1 - t0

print("It took {} seconds , and required {} calls to the Oracle

". format(duration , (counter + counter2)))

print("It called the oracle for trimming {} times ". format(

counter2 - 500))

def test(x):

global list2b

Oracle_times = []

trimmercount = []

list2b = []

u = 1

for u in range(1, (x + 1)):
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global t

t = int ("90000" + "99" + str(u))

random.seed(t)

print ("Seed {}: {}". format(u, t))

primes ()

PMS()

pad()

main(ciphertext)

Oracle_times.append(counter + counter2)

trimmercount.append(counter2 - 500)

u = (u + 1)

print ("Mean: {}, Median: {}". format(np.mean(Oracle_times),

np.median(Oracle_times)))

print

print ("The list of Oracle query numbers is: {}". format(

Oracle_times))

print ("{} seeds have entered step 2b". format(len(list2b)))

print ("The seeds that entered step 2b are {}". format(list2b))

print ("The list of oracle trimmer calls is {}". format(

trimmercount))

print (" Maximum: {}, Mean: {}, Median: {}". format(max(

trimmercount), np.mean(trimmercount), np.median(trimmercount

)))

test (1000)
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